User Guide Errata
SonoSite, the SonoSite logo, SonoSite Edge, and SonoSite SII are trademarks and registered trademarks of FUJIFILM Sonosite, Inc. in various jurisdictions. FUJIFILM is a registered trademark of FUJIFILM Corporation. Value from Innovation is a trademark of FUJIFILM Holdings America Corporation.

All other trademarks are the property of their respective owners.

Part number: P21659-09

Publication date: September 2019

Copyright © 2019 FUJIFILM Sonosite, Inc. All rights reserved.
SonoSite Edge II and SonoSite SII User Guide

Errata

Introduction ... 2
- Document conventions .. 2
- Getting Help ... 2

Getting Help (SonoSite Edge II) ... 3

Getting Started .. 3
- Intended uses (SonoSite Edge II) ... 3
- Intended uses (SonoSite SII) ... 3

System Setup .. 6
- Connectivity settings (SonoSite SII) .. 6
- Connectivity setup (SonoSite Edge II) ... 6
- Network Status settings .. 6

Imaging .. 6
- Imaging modes and exams available by transducer (SonoSite SII) ... 6

Measurements and Calculations (SonoSite SII) ... 7
- General calculations .. 7

Measurement References (SonoSite SII) .. 7
- Measurement accuracy ... 8
- Measurement publications and terminology .. 8

Cleaning and Disinfecting ... 9

Safety .. 9
- Clinical safety ... 9
- Electromagnetic compatibility .. 9
- Wireless transmission .. 11
 - Wireless USB Dongle (Panda) ... 11
 - Wireless and Security Module (Laird) .. 11
- Labeling symbols ... 23
- Specifications ... 30
 - Supported transducers (SonoSite SII) .. 30
 - Standards ... 31
 - Electromechanical safety standards .. 31

Acoustic output ... 32
- ALARA principle ... 32
- Applying the ALARA principle ... 32
- Direct controls .. 32
- Output display ... 33
 - Related guidance documents .. 33
- Acoustic output measurement .. 33
 - Terms used in the acoustic output tables ... 92

Glossary (SonoSite Edge II) ... 93
Introduction

Document conventions

The document follows these conventions:

- A **WARNING** describes precautions necessary to prevent injury or loss of life.
- A **Caution** describes precautions necessary to protect the products.
- A **Note** provides supplemental information.
- Numbered and lettered steps must be performed in a specific order.
- Bulleted lists present information in list format but do not imply a sequence.
- Single-step procedures begin with ◆.

For a description of labeling symbols that appear on the product, see "Labeling Symbols" in the user guide.

Getting Help

For technical support, please contact FUJIFILM SonoSite as follows:

Phone

(U.S. or Canada) 877-657-8118

(outside U.S. or Canada) 425-951-1330, or call your local representative

Fax 425-951-6700

Email ffss-service@fujifilm.com

Web www.sonosite.com

Europe Service Center

Main: +31 20 751 2020

English support: +44 14 6234 1151

French support: +33 1 8288 0702

German support: +49 69 8088 4030

Italian support: +39 02 9475 3655

Spanish support: +34 91 123 8451

Asia Service Center +65 6380-5581

Printed in the U.S.
Getting Help (SonoSite Edge II)

The following has been corrected in the SonoSite Edge II system user guide; the revision will be made in the next update.

Email ffss-service@fujifilm.com

Getting Started

The following content was either not included or incorrect in the SonoSite Edge II and SonoSite SII system user guides; the revisions will be made in the next update.

Intended uses (SonoSite Edge II)

Prostate imaging applications

You can assess the prostate and surrounding anatomical structures for the presence or absence of pathology.

Superficial imaging applications

You can assess the breast, thyroid, testicle, lymph nodes, hernias, musculoskeletal structures, soft tissue structures, spine, ophthalmic structures, and surrounding anatomical structures for the presence or absence of pathology. You can use the system to provide ultrasound guidance for biopsy and drainage procedures, vascular line placement, and peripheral nerve blocks.

Intended uses (SonoSite SII)

Indications for use

The SonoSite SII Ultrasound System is a general purpose ultrasound system intended for use by qualified physicians and healthcare professionals for evaluation by ultrasound imaging or fluid flow analysis of the human body. Specific clinical applications and exam types include:

- Ophthalmic
- Fetal - OB/GYN
- Abdominal
- Pediatric
- Small Organ (breast, thyroid, testicle, prostate)
- Neonatal Cephalic
- Adult Cephalic
- Trans-rectal
- Trans-vaginal
- Musculo-skeletal (Conventional)
- Musculo-skeletal (Superficial)
- Cardiac Adult
- Cardiac Pediatric
- Peripheral Vessel

The system is used with a transducer attached and is powered either by battery or by AC electrical power. The clinician is positioned beside the patient and places the transducer onto (or into, for invasive procedures) the patient’s body where needed to obtain the desired ultrasound image.

For the intended transducer for each exam type, refer to “Imaging modes and exams available by transducer” on page 11.

The system transmits ultrasound energy into the patient’s body to obtain ultrasound images as described below.

Abdominal imaging applications

You can assess the liver, kidneys, pancreas, spleen, gallbladder, bile ducts, transplanted organs, abdominal vessels, and surrounding anatomical structures for the presence or absence of pathology transabdominally.

Cardiac imaging applications

You can assess the heart size and function, cardiac valves, great vessels, visualize blood flow through cardiac valves, and assess for the presence or absence of pathology. In addition, you can identify the presence and location of fluid around the heart and lungs used to assist in pericardiocentesis and thoracentesis procedures. You can detect normal lung motion for the presence or absence of pathology. Gynecology and infertility imaging applications

You can assess the uterus, ovaries, adnexa, and surrounding anatomical structures for the presence or absence of pathology transabdominally or transvaginally.

Interventional imaging applications

You can use the system to provide ultrasound guidance for biopsy and drainage procedures, vascular line placement, peripheral nerve blocks, amniocentesis, and other obstetrical procedures.
Obstetrical imaging applications

You can assess the fetal anatomy, viability, estimated fetal weight, gestational age, amniotic fluid, and surrounding anatomical structures for the presence or absence of pathology transabdominally or transvaginally. CPD and Color imaging are intended for high-risk pregnant women. High-risk pregnancy indications include, but are not limited to, fetal hydrops, placental abnormalities, as well as maternal hypertension, diabetes, and lupus.

WARNINGS
- During the first trimester, you should limit the duration of ultrasound imaging based on MI/TI. For more information, see “Acoustic Output” on page 1.
- To prevent injury or misdiagnosis, do not use this system for Percutaneous Umbilical Blood Sampling (PUBS) or *in vitro* Fertilization (IVF) The system has not been validated to be proven effective for these two uses.
- CPD or Color images can be used as an adjunctive method, not as a screening tool, for the detection of structural anomalies of the fetal heart, and as an adjunctive method, not as a screening tool, for the diagnosis of Intrauterine Growth Retardation (IUGR)

Pediatric and neonatal imaging applications

You can assess the pediatric and neonatal abdominal, pelvic, and cardiac anatomy, pediatric hips, neonatal head, and surrounding anatomical structures for the presence or absence of pathology.

Prostate imaging applications

You can assess the prostate and surrounding anatomical structures for the presence or absence of pathology.

Superficial imaging applications

You can assess the breast, thyroid, testicle, lymph nodes, hernias, musculoskeletal structures, soft tissue structures, ophthalmic structures, and surrounding anatomical structures for the presence or absence of pathology. You can use the system to provide ultrasound guidance for biopsy and drainage procedures, vascular line placement, and peripheral nerve blocks.

WARNING To avoid injury to the patient, use only an Ophthalmic (Oph) exam type when performing imaging through the eye. The FDA has established lower acoustic energy limits for ophthalmic use. The system will not exceed these limits only if the Oph exam type is selected.

Arterial and venous imaging applications

You can assess the carotid arteries, deep veins and arteries in the arms and legs, superficial veins in the arms and legs, great vessels in the abdomen, and various small vessels feeding organs for the presence or absence of pathology.
Contraindications

The SonoSite SII ultrasound system has no known contraindications.

System Setup

Connectivity settings (SonoSite SII)

All references to PDAS should be changed to SiteLink in the SonoSite SII system user guide; the revision will be made in the next update.

Connectivity setup (SonoSite Edge II)

The following reference has been updated in the SonoSite Edge II system user guide; the revision will be made in the next update.

To enable wireless connection

❖ See Setting Up a Network Connection.

Network Status settings

If your Network Status screen displays a failed wireless device message, your network password may be expired. Make sure that you have an updated network password before connecting your wireless device.

Imaging

The C8x transducer is needle guide-capable on both the SonoSite Edge II and SonoSite SII systems.

Imaging modes and exams available by transducer (SonoSite SII)

The following footnotes were missing from Table 4-5. Imaging modes and exams available by transducer in the SonoSite SII system user guide; the revision will be made in the next update.

\(^a\)Exam type abbreviations are as follows: Abd = Abdomen, Art = Arterial, Bre = Breast, Crd = Cardiac, Gyn = Gynecology, Msk = Musculoskeletal, Neo = Neonatal, Nrv = Nerve, OB = Obstetrical, Oph = Ophthalmic, Pro = Prostate, SmP = Small Parts, Spn = Spine, Sup = Superficial, Ven = Venous.

\(^b\)The optimization settings for 2D are Res, Gen, and Pen.

\(^c\)The optimization settings for CPD and Color are low, medium, and high (flow sensitivity) with a range of PRF settings for Color depending on the setting selected.
Measurements and Calculations (SonoSite SII)

General calculations

Volume calculation

To avoid incorrect calculations, verify that the patient information, date, and time settings are accurate.

To avoid misdiagnosis or harming the patient outcome, start a new patient form before starting a new patient exam and performing calculations. Starting a new patient form clears the previous patient’s data. The previous patient’s data will be combined with the current patient if the form is not first cleared.

The volume calculation involves three 2D distance measurements: D1, D2, and D3. After all measurements are saved, the result appears on-screen and in the patient report.

The volume calculation is available in the following exam types: Abdomen, Arterial, Breast, Gynecological, Musculoskeletal, Nerve, Small Parts, Venous, and Superficial.

To calculate volume

Do the following for each image you need to measure:

1 On a frozen 2D image, tap Calcs.

2 Do the following for each measurement you need to take:

 a From the calculations menu, under Volume, select the measurement name.

 If Volume is not available in a Gyn exam, select Gyn and then select Volume.

 b Using the touchpad or the touchscreen, position the calipers

 c Tap Save Calc to save the calculation.

 A check mark appears next to the saved measurement.

3 To save a picture of the finished calculation, tap .

4 Tap Back to exit the calculation.

Measurement References (SonoSite SII)

The following information was not included in the SonoSite SII system user guide; the revision will be made in the next update.
Measurement accuracy

Table 1: M Mode Measurement and Calculation Accuracy and Range

<table>
<thead>
<tr>
<th>M Mode Measurement Accuracy and Range</th>
<th>System Tolerance</th>
<th>Accuracy By</th>
<th>Test Method</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>< +/- 2% plus 1% of full scale<sup>a</sup></td>
<td>Acquisition</td>
<td>Phantom<sup>b</sup></td>
<td>0-26 cm</td>
</tr>
<tr>
<td>Time</td>
<td>< +/- 2% plus 1% of full scale<sup>c</sup></td>
<td>Acquisition</td>
<td>Phantom<sup>d</sup></td>
<td>0.01-10 sec</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>< +/- 2% plus (Full Scale<sup>c</sup> * Heart Rate/100)%</td>
<td>Acquisition</td>
<td>Phantom<sup>d</sup></td>
<td>5-923 bpm</td>
</tr>
</tbody>
</table>

^aFull scale for distance implies the maximum depth of the image.

^bAn RMI 413a model phantom with 0.7 dB/cm MHz attenuation was used.

^cFull scale for time implies the total time displayed on the scrolling graphic image.

^dFUJIFILM SonoSite special test equipment was used.

Measurement publications and terminology

General references

Hip Angle/d:D Ratio

Percent Area Reduction

\[
\text{% Area Reduction} = \left[1 - \frac{A2(cm^2)}{A1(cm^2)}\right] \times 100 \\
\text{where:} \quad A1 = \text{original area of the vessel in square cm} \\
\text{A2 = reduced area of the vessel in square cm}
\]

Percent Diameter Reduction

\[
\text{% Diameter Reduction} = \left[1 - \frac{D2(cm)}{D1(cm)}\right] \times 100
\]
where: \(D1 = \) original diameter of the vessel in cm
\(D2 = \) reduced diameter of the vessel in cm

Cleaning and Disinfecting

The following website was corrected in the SonoSite Edge II and SonoSite SII user guides; the revision will be made in the next update.

www.sonosite.com/products/transducers

The following footnote was updated in the cleaning and disinfecting tables.

Refer to the cleaners and disinfection tool available at www.sonosite.com/support/cleaners-disinfectants for a more complete list of approved cleaners and disinfectants.

Safety

Clinical safety

The following warning has been updated in the SonoSite Edge II and SonoSite SII user guides; the revision will be made in the next update.

WARNING FUJIFILM SonoSite does not recommend the use of high-frequency (HF) electromedical devices in proximity to its systems. FUJIFILM SonoSite equipment has not been validated for use with HF electrosurgical devices or procedures. Use of HF electrosurgical devices in proximity to its systems may lead to abnormal system behavior or shutdown of the system.

To avoid the risk of a burn hazard, do not use the transducer with HF surgical equipment. Such a hazard may occur in the event of a defect in the HF surgical neutral electrode connection.

Electromagnetic compatibility

The ultrasound system has been tested and found to comply with the electromagnetic compatibility (EMC) limits for medical devices to IEC 60601-1-2:2007 and IEC 60601-1-2:2014. The ultrasound system is suitable for use in the professional healthcare facility environment. Active HF surgical equipment causes high electromagnetic disturbances which may interfere with the ultrasound system operation. The ultrasound system should not be operated inside an RF-shielded room where magnetic resonance imagery is present,
because it produces high electromagnetic disturbances which may interfere with the ultrasound system operation. These limits are designed to provide reasonable protection against harmful interference in a typical medical installation.

Cautions

- Medical electrical equipment requires special precautions regarding EMC and must be installed and operated according to these instructions. Portable RF communications equipment (including peripherals, such as antenna cables and external antennas) should be used no closer than 30 cm (12 inches) to any part of the ultrasound system, including cables specified by FUJIFILM SonoSite. Portable and mobile RF communications equipment can affect the ultrasound system. Electromagnetic interference (EMI) from other equipment or interference sources could result in performance disruption of the ultrasound system. Evidence of disruption may include image degradation or distortion, erratic readings, equipment ceasing to operate, or other incorrect functioning. If this occurs, survey the site to determine the source of disruption, and take the following actions to eliminate the source(s).
 - Turn equipment in the vicinity off and on to isolate disruptive equipment.
 - Relocate or re-orient interfering equipment.
 - Increase distance between interfering equipment and your ultrasound system.
 - Manage use of frequencies close to ultrasound system frequencies.
 - Remove devices that are highly susceptible to EMI.
 - Lower power from internal sources within facility control (such as paging systems).
 - Label devices susceptible to EMI.
 - Educate clinical staff to recognize potential EMI-related problems.
 - Eliminate or reduce EMI with technical solutions (such as shielding).
 - Restrict use of personal communicators (cell phones, computers) in areas with devices susceptible to EMI.
 - Share relevant EMI information with others, particularly when evaluating new equipment purchases which may generate EMI.
 - Purchase medical devices that comply with IEC 60601-1-2 EMC Standards.

- Do not stack other equipment on the ultrasound system or use other equipment in close proximity and adjacent to the ultrasound system. If stacking or using other equipment in close proximity is unavoidable, then you must observe the system to verify normal operation.
Wireless transmission

The SonoSite Edge II and SII ultrasound systems implement two wireless solutions.

- Wireless USB Dongle (Panda) is a small wireless adapter that plugs into the USB port on the:
 - Right side of the Edge II ultrasound system
 - Upper back of the SII ultrasound system.
- Wireless and Security Module (Laird) is a module that mounts on the:
 - Lid of the Edge II ultrasound system and then plugs into the system with a right-angled USB cord
 - Transducer holder arm of the SII ultrasound system and then plugs into the system with a 12 inch USB cord

Refer to the information below for the transmission information for each one.

Wireless USB Dongle (Panda)

The Wireless USB Dongle uses the Industrial, Scientific, and Medical (ISM) frequency bands from 2.412 to 2.4835 GHz, depending on your country’s regulation. The dongle implements the following methods of transmission:

- IEEE 802.11b with Direct Sequence Spread Spectrum (DSSS) at 19 dBm: Peak rate 54Mbps, Peak throughput: 27Mbps
- IEEE 802.11g with Orthogonal Frequency Division Multiplexing (OFDM) at 16 dBm: Peak rate 54Mbps, Peak throughput: 27Mbps
- IEEE 802.11n with Orthogonal Frequency Division Multiplexing (OFDM) at 15 dBm:
 - 1 T1 R. Peak rate: 150 Mbps, Peak throughput: 90 Mbps
 - 1 T2R. Peak rate: 300 Mbps, Peak throughput: Rx 160 Mbps
 - 2T2R. Peak rate: 300 Mbps, Peak throughput: Rx 260 Mbps

Wireless and Security Module (Laird)

The Wireless and Security Module uses the Industrial, Scientific, and Medical (ISM) frequency bands from 1.400 to 2.4835 GHz, and from 5.100 to 5.800 GHz. The module implements four different methods of transmission:

Note: The emissions characteristics of the SonoSite Edge II and SII ultrasound systems make it suitable for use in industrial areas and hospitals (CISPR 11 class A). If it is used in a residential environment (for which CISPR 11 class B is normally required), the ultrasound system might not offer adequate protection to radio-frequency communication services. It may be necessary to take mitigation measures, such as relocating or reorienting the equipment.
IEEE 802.11a with Orthogonal Frequency Division Multiplexing (OFDM) at 11 dBm ± 2 dBm @ 54 Mbps
IEEE 802.11b with Direct Sequence Spread Spectrum (DSSS) at 16 dBm ± 2.0 dBm @ 11 Mbps
IEEE 802.11g with Orthogonal Frequency Division Multiplexing (OFDM) at 13 dBm ±2.0 dBm @ 54 Mbps
IEEE 802.11n with Orthogonal Frequency Division Multiplexing (OFDM) at 12 dBm ± 2.0 dBm (802.11gn) @ MCS7

Compatible accessories and peripherals (SonoSite Edge II)

FUJIFILM SonoSite has tested the SonoSite Edge II ultrasound system with the following accessories and peripherals and has demonstrated compliance to the requirements of IEC60601-1-2:2007 and IEC60601-1-2:2014.

You may use these FUJIFILM SonoSite accessories and third-party peripherals with the SonoSite Edge II.

WARNINGS

- Use of the accessories with medical systems other than the Edge ultrasound system may result in increased emissions or decreased immunity of the medical system.
- Use of accessories other than those specified may result in increased emissions or decreased immunity of the ultrasound system.
- The ultrasound system should not be used in a domestic establishment or connected to the public mains network.

Table 1–1: Accessories and peripherals compatible with Edge II ultrasound system

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8x transducer</td>
<td>6.0 ft / 1.8 m</td>
</tr>
<tr>
<td>C11x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>C35x transducer</td>
<td>5.5 ft / 1.7 m</td>
</tr>
<tr>
<td>rC60xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>HFL38xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>HFL50x transducer</td>
<td>5.7 ft/1.7 m</td>
</tr>
</tbody>
</table>

For transducers, the maximum cable length is measured between the strain reliefs. The stated length do not include the lengths of cable in the following locations: underneath the strain reliefs, inside the transducer enclosure, and inside the transducer connector.

The L52x transducer is for veterinary use only.
Table 1-1: Accessories and peripherals compatible with Edge II ultrasound system

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL25x transducer</td>
<td>7.5 ft/2.3 m</td>
</tr>
<tr>
<td>ICTx transducer</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>L25x transducer standard/armored</td>
<td>7.5 ft/2.3 m</td>
</tr>
<tr>
<td>L38xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>L52x transducer<sup>a</sup></td>
<td>7.9 ft/2.4 m</td>
</tr>
<tr>
<td>P10x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>rP19x transducer standard/armored</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>TEExi transducer</td>
<td>7.2 ft/2.2 m</td>
</tr>
<tr>
<td>Bar code scanner</td>
<td>4.8 ft/1.5 m</td>
</tr>
<tr>
<td>Battery for PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Battery Pack</td>
<td>—</td>
</tr>
<tr>
<td>Battery PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Black & white printer</td>
<td>—</td>
</tr>
<tr>
<td>Black & white printer power cable</td>
<td>3.3 ft/1 m</td>
</tr>
<tr>
<td>Color printer</td>
<td>—</td>
</tr>
<tr>
<td>Color printer power cable</td>
<td>3.3 ft/1 m</td>
</tr>
<tr>
<td>Color printer video cable</td>
<td>6 ft/1.8 m</td>
</tr>
<tr>
<td>ECG lead wires</td>
<td>24 in/0.6 m</td>
</tr>
<tr>
<td>ECG module</td>
<td>5.8 ft/1.8 m</td>
</tr>
<tr>
<td>ECG slave cable</td>
<td>8 ft/2.4 m</td>
</tr>
<tr>
<td>SonoSite Edge II Dock</td>
<td>—</td>
</tr>
<tr>
<td>SonoSite Edge II Stand</td>
<td>—</td>
</tr>
</tbody>
</table>

For transducers, the maximum cable length is measured between the strain reliefs. The stated length do not include the lengths of cable in the following locations: underneath the strain reliefs, inside the transducer enclosure, and inside the transducer connector.

^aThe L52x transducer is for veterinary use only.
FUJIFILM SonoSite has tested the SonoSite SII Ultrasound System with the following accessories and peripherals and has demonstrated compliance to the requirements of IEC60601-1-2:2007 and IEC 60601-1-2:2014.

You may use these FUJIFILM SonoSite accessories and third-party peripherals with the SonoSite SII ultrasound system.

WARNINGS

- Use of the accessories with medical systems other than the SonoSite SII ultrasound system may result in increased emissions or decreased immunity of the medical system.
- Use of accessories other than those specified may result in increased emissions or decreased immunity of the ultrasound system.

Compatible accessories and peripherals (SonoSite SII)

Table 1-1: Accessories and peripherals compatible with Edge II ultrasound system

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footswitch</td>
<td>9.8 ft/3 m</td>
</tr>
<tr>
<td>Petite mouse</td>
<td>6 ft /1.8 m</td>
</tr>
<tr>
<td>Power cord (system)</td>
<td>10 ft/3 m</td>
</tr>
<tr>
<td>Power supply with DC cable</td>
<td>6.8 ft/2 m</td>
</tr>
<tr>
<td>Power supply AC cable</td>
<td>39 in/1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
<tr>
<td>Triple Transducer Connect</td>
<td>—</td>
</tr>
<tr>
<td>USB wireless adapter</td>
<td>—</td>
</tr>
</tbody>
</table>

For transducers, the maximum cable length is measured between the strain reliefs. The stated length do not include the lengths of cable in the following locations: underneath the strain reliefs, inside the transducer enclosure, and inside the transducer connector.

*The L52x transducer is for veterinary use only.

Table 1-2: Accessories and peripherals compatible with SonoSite SII ultrasound system

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
</tbody>
</table>
Table 1-2: Accessories and peripherals compatible with SonoSite SII ultrasound system

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>C35x transducer</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>rC60xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>HFL38xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>HFL50x transducer</td>
<td>5.7 ft/1.7 m</td>
</tr>
<tr>
<td>HSL25x transducer</td>
<td>7.5 ft/2.3 m</td>
</tr>
<tr>
<td>ICTx transducer</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>L25x transducer standard/armored</td>
<td>7.5 ft/2.3 m</td>
</tr>
<tr>
<td>L38xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>L52x transducer</td>
<td>7.9 ft/2.4 m</td>
</tr>
<tr>
<td>P10x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>rP19x transducer standard/armored</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>Bar code scanner</td>
<td>4.8 ft/1.5 m</td>
</tr>
<tr>
<td>Battery for PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Battery Pack</td>
<td>—</td>
</tr>
<tr>
<td>Battery PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Black & white printer</td>
<td>—</td>
</tr>
<tr>
<td>Black & white printer power cable</td>
<td>3.3 ft/1 m</td>
</tr>
<tr>
<td>Black & white printer control cable</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>Black & white printer video cable</td>
<td>6.2 ft/1.9 m</td>
</tr>
<tr>
<td>Footswitch</td>
<td>9.8 ft/3 m</td>
</tr>
<tr>
<td>Footswitch USB extension cable</td>
<td>6.5 ft/2 m</td>
</tr>
<tr>
<td>SonoSite SII Stand</td>
<td>—</td>
</tr>
<tr>
<td>Power cord (system)</td>
<td>10 ft/3 m</td>
</tr>
<tr>
<td>Power supply with DC cable</td>
<td>6.8 ft/2 m</td>
</tr>
</tbody>
</table>
Manufacturer’s declaration

The tables in this section document the intended use environment and EMC compliance levels of the system. For maximum performance, ensure that the system is used in the environments described in this table.

The system is intended for use in the electromagnetic environment specified below.

<table>
<thead>
<tr>
<th>Emissions Test</th>
<th>Compliance</th>
<th>Electromagnetic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISPR 11</td>
<td>Group 1</td>
<td>The Edge II and SII ultrasound systems use RF energy only for their internal functions. Therefore, their RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>RF emissions</td>
<td>Class A</td>
<td>The Edge II and SII ultrasound systems are suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network which supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Harmonic emissions</td>
<td>Class A</td>
<td></td>
</tr>
<tr>
<td>IEC 61000–3–2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations/flicker emissions</td>
<td>Complies</td>
<td></td>
</tr>
</tbody>
</table>
The system is intended for use in the electromagnetic environment specified below.

Table 1-4: Manufacturer’s Declaration - Electromagnetic Immunity per IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>± 2.0KV, ± 4.0KV, ± 6.0KV contact ± 2.0KV, ± 4.0KV, ± 8.0KV air</td>
<td>± 2.0KV, ± 4.0KV, ± 6.0KV contact ± 2.0KV, ± 4.0KV, ± 8.0KV air</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>Electrical fast Transient burst</td>
<td>± 2KV on the mains ± 1KV on signal lines</td>
<td>± 2KV on the mains ± 1KV on signal lines</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Surge</td>
<td>± 1KV line(s) to line(s) ± 2KV line(s) to earth</td>
<td>± 1KV line(s) to line(s) ± 2KV line(s) to earth</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply input lines</td>
<td><5% U_T (>95% dip in U_T) for 0.5 cycle 40% U_T (60% dip in U_T) for 5 cycles 70% U_T (30% dip in U_T) for 25 cycles <5% U_T (>95% dip in U_T) for 5s</td>
<td><5% U_T (>95% dip in U_T) for 0.5 cycle 40% U_T (60% dip in U_T) for 5 cycles 70% U_T (30% dip in U_T) for 25 cycles <5% U_T (>95% dip in U_T) for 5s</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of the FUJIFILM SonoSite ultrasound system requires continued operation during power mains interruptions, it is recommended that the FUJIFILM SonoSite ultrasound system be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power Frequency Magnetic Field</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>If image distortion occurs, it may be necessary to position the FUJIFILM SonoSite ultrasound system further from sources of power frequency magnetic fields or to install magnetic shielding. The power frequency magnetic field should be measured in the Intended installation location to assure that it is sufficiently low.</td>
</tr>
<tr>
<td>Immunity Test</td>
<td>IEC 60601 Test Level</td>
<td>Compliance Level</td>
<td>Electromagnetic Environment</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Conducted RF</td>
<td>3 Vrms 150 kHz to 80 MHz</td>
<td>3 Vrms</td>
<td>Portable and mobile RF communications equipment should be used no closer to any part of the FUJIFILM SonoSite ultrasound system including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended Separation Distance (d = 1.2 \sqrt{P})</td>
</tr>
<tr>
<td>Radiated RF</td>
<td>3 V/m 80 MHz to 2.5 GHz</td>
<td>3 V/m 80 MHz to 2.5 GHz</td>
<td>Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey(^2), should be less than the compliance level in each frequency range(^b). Interference may occur in the vicinity of equipment marked with the following symbol: (IEC 60417 No. 417-IEC-5140: “Source of non-ionizing radiation”)</td>
</tr>
</tbody>
</table>

Note

\(U_T \) is the AC mains voltage prior to application of the test level. At 80 MHz and 800 MHz, the higher frequency range applies. These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
a. Field strengths from fixed transmitters such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the FUJIFILM SonoSite ultrasound system is used exceeds the applicable RF compliance level above, the FUJIFILM SonoSite ultrasound system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the FUJIFILM SonoSite ultrasound system.

b. Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.

Table 1-4: Manufacturer’s Declaration - Electromagnetic Immunity per IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>± 8.0KV, contact</td>
<td>± 8.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>± 2.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td>± 8.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td></td>
</tr>
<tr>
<td>Electrical fast Transient burst</td>
<td>± 2KV on the mains</td>
<td>± 2KV on the mains</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>± 1KV on signal lines</td>
<td>± 1KV on signal lines</td>
<td></td>
</tr>
<tr>
<td>Surge</td>
<td>± 1KV line(s) to line(s)</td>
<td>± 1KV line(s) to line(s)</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>± 2KV line(s) to earth</td>
<td>± 2KV line(s) to earth</td>
<td></td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply input lines</td>
<td>0% U_T for 0.5 cycle 0% U_T for 5 cycles 70% U_T (30% dip in U_T) for 500 msec <5% U_T (>95% dip in U_T) for 5s</td>
<td>0% U_T for 0.5 cycle 0% U_T for 5 cycles 70% U_T (30% dip in U_T) for 500 msec <5% U_T (>95% dip in U_T) for 5s</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of the FUJIFILM SonoSite ultrasound system requires continued operation during power mains interruptions, it is recommended that the FUJIFILM SonoSite ultrasound system be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1-5: Manufacturer’s Declaration - Electromagnetic Immunity per IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>± 8.0KV, contact ± 2.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td>± 8.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>± 2.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td>± 8.0KV, ± 4.0KV, ± 8.0KV air, ± 15KV</td>
<td></td>
</tr>
<tr>
<td>Electrical fast Transient burst</td>
<td>± 2KV on the mains ± 1KV on signal lines</td>
<td>± 2KV on the mains ± 1KV on signal lines</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>± 1KV on signal lines</td>
<td>± 1KV on signal lines</td>
<td></td>
</tr>
<tr>
<td>Surge</td>
<td>± 1KV line(s) to line(s) ± 2KV line(s) to earth</td>
<td>± 1KV line(s) to line(s) ± 2KV line(s) to earth</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>± 2KV line(s) to earth</td>
<td>± 2KV line(s) to earth</td>
<td></td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply input lines</td>
<td>0% U_T for 0.5 cycle 0% U_T for 5 cycles 70% U_T (30% dip in U_T) for 500 msec <5% U_T (>95% dip in U_T) for 5s</td>
<td>0% U_T for 0.5 cycle 0% U_T for 5 cycles 70% U_T (30% dip in U_T) for 500 msec <5% U_T (>95% dip in U_T) for 5s</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of the FUJIFILM SonoSite ultrasound system requires continued operation during power mains interruptions, it is recommended that the FUJIFILM SonoSite ultrasound system be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If image distortion occurs, it may be necessary to position the FUJIFILM SonoSite ultrasound system further from sources of power frequency magnetic fields or to install magnetic shielding. The power frequency magnetic field should be measured in the Intended installation location to assure that it is sufficiently low.

Portable and mobile RF communications equipment should be used no closer to any part of the FUJIFILM SonoSite ultrasound system including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.

Recommended Separation Distance
\[d = 1.2 \sqrt{P} \]
Table 1-5: Manufacturer’s Declaration - Electromagnetic Immunity per IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated RF IEC 61000-4-3</td>
<td>3 V/m 80 MHz to 2.7 GHz</td>
<td>3 V/m 80 MHz to 2.7 GHz</td>
<td>$d = 1.2 \sqrt{P}$ 80 MHz to 800 MHz $d = 2.3 \sqrt{P}$ 800 MHz to 2.5 GHz Where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and it is the recommended separation distance in meters (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey(^a), should be less than the compliance level in each frequency range(^b). Interference may occur in the vicinity of equipment marked with the following symbol: (IEC 60417 No. 417-IEC-5140: “Source of non-ionizing radiation”)</td>
</tr>
<tr>
<td>Proximity fields from wireless communications equipment</td>
<td>Per 60601-1-2:2014 Table 9</td>
<td>Per 60601-1-2:2014 Table 9</td>
<td></td>
</tr>
</tbody>
</table>

Note

- U_T is the AC mains voltage prior to application of the test level.
- At 80 MHz and 800 MHz, the higher frequency range applies.
- These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

\(^a\) Field strengths from fixed transmitters such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the FUJIFILM SonoSite ultrasound system is used exceeds the applicable RF compliance level above, the FUJIFILM SonoSite ultrasound system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the FUJIFILM SonoSite ultrasound system.

\(^b\) Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.
FCC Caution: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Compatible accessories and peripherals

The following warning was added to the SonoSite Edge II and SonoSite SII user guides; the revision will be made in the next update.

WARNING If peripherals are connected to the system, ensure that the system and peripherals are connected to the same AC Mains branch circuit.
Labeling symbols

Table 1-6: Standards labeling symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturer</td>
<td>ISO 15223-1:2016 Medical devices – symbols to be used with medical device labels, labelling, and information to be supplied – Part 1: General requirements</td>
<td>5.1.1</td>
<td>Indicates the medical device manufacturer, as EU directives 90/385/EEC, 93/42/EEC and 98/79/EC</td>
</tr>
<tr>
<td></td>
<td>Non-ionizing electromagnetic radiation</td>
<td>IEC 60601-1-2:2007 Medical Electrical Equipment Part 1-2: General requirements for basic safety and essential performance – collateral standard: electromagnetic compatibility</td>
<td>5.1.1</td>
<td>Indicates generally elevated, potentially hazardous levels of non-ionizing radiation, or to indicate equipment or systems e.g., in the medical electrical area that include RF transmitters or that intentionally apply RF electromagnetic energy for diagnosis or treatment</td>
</tr>
<tr>
<td></td>
<td>European community authorized representative</td>
<td>ISO 15223-1 Medical devices - symbols to be used with medical device labels, labelling and information to be supplied.</td>
<td>5.1.2</td>
<td>Indicates the Authorized representative in the European Community</td>
</tr>
<tr>
<td></td>
<td>Serial number</td>
<td>ISO 15223-1:2016 Medical devices – symbols to be used with medical device labels, labelling, and information to be supplied – Part 1: General requirements</td>
<td>5.1.7</td>
<td>Indicates the manufacturer’s serial number so that a specific medical device can be identified</td>
</tr>
<tr>
<td></td>
<td>Catalog number</td>
<td>ISO 15223-1:2016 Medical devices – symbols to be used with medical device labels, labelling, and information to be supplied – Part 1: General requirements</td>
<td>5.1.6</td>
<td>Indicates the manufacturer’s catalog number so that the medical device can be identified</td>
</tr>
</tbody>
</table>
Table 1-6: Standards labeling symbols (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨</td>
<td>Caution</td>
<td>ISO 15223-1:2016</td>
<td>5.4.4</td>
<td>Indicates the need for the user to consult the instructions for use for important cautionary information such as warnings and precautions, that cannot for a variety of reasons, be presented on the medical device itself.</td>
</tr>
<tr>
<td>🍾</td>
<td>Fragile handle with care</td>
<td>ISO 15223-1:2016</td>
<td>5.3.1</td>
<td>Indicates a medical device that can be broken or damaged if not handled carefully.</td>
</tr>
<tr>
<td>⚫️</td>
<td>Keep dry</td>
<td>ISO 15223-1:2016</td>
<td>5.3.4</td>
<td>Indicates a medical device that needs to be protected from moisture.</td>
</tr>
<tr>
<td>📈</td>
<td>Temperature limit</td>
<td>ISO 15223-1:2016</td>
<td>5.3.7</td>
<td>Indicates the temperature limits to which the medical device can be safely exposed.</td>
</tr>
<tr>
<td>📈</td>
<td>Atmospheric pressure limitations</td>
<td>ISO 15223-1:2016</td>
<td>5.3.9</td>
<td>Indicates the range of atmospheric pressure to which the medical device can be safely exposed.</td>
</tr>
<tr>
<td>🌬️</td>
<td>Humidity limitation</td>
<td>ISO 15223-1:2016</td>
<td>5.3.8</td>
<td>Indicates the range of humidity to which the medical device can be safely exposed.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Title</td>
<td>Standards development organization</td>
<td>Reference number</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>IPX7</td>
<td>Degree of ingress protection provided by enclosure</td>
<td>IEC 60601-1 Medical electrical equipment Part 1: General requirements for basic safety and essential performance</td>
<td>D.3</td>
<td>Protected against the effects of temporary immersion</td>
</tr>
<tr>
<td></td>
<td>Refer to instruction manual/booklet</td>
<td>IEC 60601-1 Medical electrical equipment Part 1: General requirements for basic safety and essential performance</td>
<td>D.2–10</td>
<td>Follow instructions for use (used in accordance with IEC 60601-1)</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use</td>
<td>ISO 15223-1:2016 Medical devices – symbols to be used with medical device labels, labelling, and information to be supplied – Part 1: General requirements</td>
<td>5.4.3</td>
<td>Indicates the need for the user to consult the instructions for use</td>
</tr>
<tr>
<td></td>
<td>Alternating current</td>
<td>ISO 7000 / IEC 60417 Graphical symbols for use on equipment</td>
<td>5032</td>
<td>Indicates on the rating plate, that the equipment is suitable for alternating current only, in order to identify appropriate terminals</td>
</tr>
<tr>
<td></td>
<td>Dangerous voltage</td>
<td>ISO 7000 / IEC 60417 Graphical symbols for use on equipment</td>
<td>5036</td>
<td>Indicates hazards arising from dangerous voltage</td>
</tr>
</tbody>
</table>
Table 1-6: Standards labeling symbols (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Symbol](image) | Stacking limit by number | ISO 7000 / IEC 60417
Graphical symbols for use on equipment | 2403 | Indicates that the items are not to be vertically stacked higher than the specified number of items |
| ![Symbol](image) | Caution hot | ISO 7000 / IEC 60417
Graphical symbols for use on equipment | 5041 | Indicates that the marked item can be hot and should not be touched without taking care |
| ![Symbol](image) | Caution, static magnetic field hazard | ISO 7000 / IEC 60417
Graphical symbols for use on equipment | 6204 | Identifies areas with potentially hazardous static magnetic fields and forces in an installation |
| ![Symbol](image) | Type BF applied parts | IEC 60601-1
Medical electrical equipment Part 1: General requirements for basic safety and essential performance | D.2-10 | Identifies type BF applied part complying with IEC 60601-1 |
| ![Symbol](image) | Defibrillation-proof type CF applied part | IEC 60601-1
Medical electrical equipment Part 1: General requirements for basic safety and essential performance | D.1-27 | Identifies a defibrillation-proof type CF applied part complying with IEC 60601-1 |
| ![Symbol](image) | Electrostatic sensitive device | IEC 60417:2002
Graphical Symbols For Use On Equipment | 5134 | Indicates packages containing electrostatic sensitive devices, or identifies a device or a connector that has not been tested for immunity to electrostatic discharge |
| ![Symbol](image) | Regulatory Compliance Mark (RCM) | AS/NZS3820 | — | Indicates C-Tick-Regulatory Compliance Mark for Australia and New Zealand Device complies with relevant Australian and New Zealand regulations for electronic devices. |
Table 1-6: Standards labeling symbols (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batch code, date code, or lot code type of control number</td>
<td>ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labelling and information to be supplied - Part 1: General Requirements</td>
<td>5.1.5</td>
<td>Indicates manufacturer's batch code so that the batch or lot can be identified</td>
</tr>
<tr>
<td></td>
<td>Biological risk</td>
<td>ISO 7010 - Graphical symbols -- Safety colors and safety signs</td>
<td>W009</td>
<td>To warn of biological Hazard</td>
</tr>
<tr>
<td></td>
<td>INMETRO Safety Symbols</td>
<td>—</td>
<td>—</td>
<td>Indicates Brazil - Accredited certification body by the National Institute of Metrology Standardization and Industrial Quality (INMETRO)</td>
</tr>
<tr>
<td></td>
<td>Canadian Standard Association Certification Mark</td>
<td>—</td>
<td>—</td>
<td>CSA certification mark signifying that the product complies with the applicable CSA and ANSI/UL requirements and is authorized for use in Canada and the US.</td>
</tr>
<tr>
<td></td>
<td>Corrugated recycle</td>
<td>—</td>
<td>—</td>
<td>Shipping box is made of corrugated cardboard and should be recycled accordingly</td>
</tr>
<tr>
<td></td>
<td>Date of manufacture</td>
<td>ISO 7000- Graphical symbols for Use on Equipment</td>
<td>5.1.3</td>
<td>To indicate the date on which a product was manufactured</td>
</tr>
<tr>
<td></td>
<td>Direct current (DC)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 1-6: Standards labeling symbols (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEL</td>
<td>Gel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Resy- Recycling Symbol]</td>
<td>Resy- Recycling Symbol</td>
<td></td>
<td></td>
<td>Paper recycle</td>
</tr>
<tr>
<td>![IPX7]</td>
<td>Degree of Ingress Protection Provided by Enclosure</td>
<td>IEC 60601-1 Medical Electrical Equipment Part 1: General requirements for basic safety and essential performance</td>
<td>D.3</td>
<td>Protected against the effects of temporary immersion in water. Submersible</td>
</tr>
<tr>
<td>![IPX8]</td>
<td>Degree of Ingress Protection Provided by Enclosure</td>
<td>IEC 60601-1 Medical Electrical Equipment Part 1: General requirements for basic safety and essential performance</td>
<td>D.3</td>
<td>Protected against the effects of temporary immersion in water. Water-Tight Equipment</td>
</tr>
<tr>
<td>![Indicate handle with care]</td>
<td></td>
<td></td>
<td></td>
<td>Indicates handle with care</td>
</tr>
<tr>
<td>![Indicate follow manufacturer's instructions for disinfecting time]</td>
<td></td>
<td></td>
<td></td>
<td>Indicates follow manufacturer's instructions for disinfecting time</td>
</tr>
<tr>
<td>![Indicate disinfect transducer]</td>
<td></td>
<td></td>
<td></td>
<td>Indicates disinfect transducer</td>
</tr>
<tr>
<td>![Maximum weight load]</td>
<td>Maximum weight load</td>
<td>IEC 60601-1 Medical Electrical Equipment Part 1: General requirements for basic</td>
<td>7.2.21</td>
<td>Indicates total weight of the equipment, including the safe working load</td>
</tr>
</tbody>
</table>
Table 1-6: Standards labeling symbols (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Title</th>
<th>Standards development organization</th>
<th>Reference number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Underwriters Laboratories Certification Mark</td>
<td>—</td>
<td>—</td>
<td>Certification mark for electrical shock, fire, and mechanical hazards only</td>
</tr>
<tr>
<td></td>
<td>UL Product Certification.</td>
<td>—</td>
<td>—</td>
<td>The product or company has successfully met stringent standards for product safety.</td>
</tr>
<tr>
<td></td>
<td>China Pollution Control (10)</td>
<td>ISO 7000:2014 Graphical symbols for use on equipment</td>
<td>1135</td>
<td>Pollution Control Logo. (Applies to all parts/products listed in the China RoHS disclosure table. May not appear on the exterior of some parts/products because of space limitations.)</td>
</tr>
<tr>
<td></td>
<td>China Compulsory Certificate mark ("CCC Mark"). A Compulsory safety mark for compliance to Chinese national standards for many products sold in the People's Republic of China.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Sterilized using ethylene oxide</td>
<td>ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General Requirements</td>
<td>5.2.3</td>
<td>Indicates a medical device that has been sterilized using ethylene oxide</td>
</tr>
</tbody>
</table>
Specifications

Supported transducers (SonoSite SII)

The following redundant section was removed from the SonoSite SII user guide. The same information is present in Table 9-2 of the user guide; the revision will be made in the next update.

Table 2: Supported transducers

<table>
<thead>
<tr>
<th>Description</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11x transducer</td>
<td>6.0 ft/1.8 m</td>
</tr>
<tr>
<td>rC60xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
<tr>
<td>HFL38xi transducer standard/armored</td>
<td>5.5 ft/1.7 m</td>
</tr>
</tbody>
</table>

For transducers, the maximum cable length is measured between the strain reliefs. The stated length does not include the lengths of cable in the following locations: underneath the strain reliefs, inside the transducer enclosure, and inside the transducer connector.
Electromechanical safety standards

Table 1-1: Electromechanical safety standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA C22.2 No. 60601-1:2014 (Edition 3.1)</td>
<td>Medical electrical equipment - Part 1: General Requirements for Basic Safety and Essential Performance</td>
</tr>
<tr>
<td>IEC 60601-1:2012 (Edition 3.1)</td>
<td>Medical electrical equipment - Part 1: General Requirements for Basic Safety and Essential Performance</td>
</tr>
<tr>
<td>IEC 60601-1-6:2013</td>
<td>Medical Electrical Equipment part 1-6: General requirements for basic safety and essential performance – Collateral Standard: Usability</td>
</tr>
</tbody>
</table>
Acoustic output

ALARA principle

Applying the ALARA principle

The system imaging mode selected by the qualified ultrasound user is determined by the diagnostic information required. 2D imaging provides anatomical information; CPD imaging provides information about the energy or amplitude strength of the Doppler signal over time at a given anatomical location and is used for detecting the presence of blood flow; Color imaging provides information about the energy or amplitude strength of the Doppler signal over time at a given anatomical location and is used for detecting the presence, velocity, and direction of blood flow; Tissue Harmonic Imaging (THI) uses higher received frequencies to reduce clutter, artifact, and improve resolution on the 2D image. Understanding the nature of the imaging mode used allows the qualified ultrasound user to apply the ALARA principle.

Prudent use of ultrasound requires that patient exposure to ultrasound be limited to the lowest ultrasound output for the shortest time necessary to achieve acceptable diagnostic results. Decisions that support prudent use are based on the type of patient, exam type, patient history, ease or difficulty of obtaining diagnostically useful information, and potential localized heating of the patient due to transducer surface temperature.

The system has been designed to ensure that temperature at the face of the transducer will not exceed the limits established in IEC 60601-2-37: Particular requirement for the safety of ultrasound medical diagnostic and monitoring equipment. See “Transducer surface temperature rise” on page 10-9. In the event of a device malfunction, there are redundant controls that limit transducer power. This is accomplished by an electrical design that limits both power supply current and voltage to the transducer.

The sonographer uses the system controls to adjust image quality and limit ultrasound output. The system controls are divided into three categories relative to output: controls that directly affect output, controls that indirectly affect output, and receiver controls.

Direct controls

The system does not exceed a spatial peak temporal average intensity (ISPTA) of 720 mW/cm² for all imaging modes. (For either the Ophthalmic or Orbital exam, the acoustic output is limited to the following values: ISPTA does not exceed 50 mW/cm²; TI does not exceed 1.0, and MI does not exceed 0.23.) The mechanical index (MI) and thermal index (TI) may exceed values greater than 1.0 on some transducers in some imaging modes. One may monitor the MI and TI values and adjust the controls to reduce these values. See “Guidelines for reducing MI and TI” on page 10-3. Additionally, one means for meeting the ALARA principle is to set the MI or TI values to a low index value and then modifying this level until a satisfactory image or Doppler mode is obtained. For more information on MI and TI, refer to Medical Ultrasound Safety, AIUM (a copy is included with each system) and IEC 60601-2-37 Annex “Guidance on the interpretation of TI and MI to be used to inform the operator.”
Output display

Related guidance documents

Medical Ultrasound Safety, American Institute of Ultrasound in Medicine (AIUM), 2014. (A copy is included with each system.)

IEC 60601-2-37: 2015, Particular requirements for the basic safety and essential performance of ultrasonic diagnostic and monitoring equipment.

Transducer surface temperature rise

Table 10-4 and Table 10-5 list the measured surface temperature rise from ambient (23°C ± 3°C) of transducers used on the ultrasound system. The temperatures were measured in accordance with IEC 60601-2-37 with controls and settings positioned to give maximum temperatures.

Acoustic output measurement

Since the initial use of diagnostic ultrasound, the possible human biological effects (bioeffects) from ultrasound exposure have been studied by various scientific and medical institutions. In October 1987, the American Institute of Ultrasound in Medicine (AIUM) ratified a report from its Bioeffects Committee (Bioeffects Considerations for the Safety of Diagnostic Ultrasound, J Ultrasound Med., Sept. 1988: Vol. 7, No. 9 Supplement). The report, sometimes referred to as the Stowe Report, reviewed available data on possible effects of ultrasound exposure. Another report, *Bioeffects and Safety of Diagnostic Ultrasound*, dated January 28, 1993, provides more current information.

The acoustic output for this ultrasound system has been measured and calculated in accordance with “Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment” (NEMA UD2-2004) and IEC 60601-2-37: 2015, Particular requirements for the basic safety and essential performance of ultrasonic diagnostic and monitoring equipment.

Acoustic output tables

The format of the acoustic output tables has been updated.

- **Transducer model: C8x Operating mode: 2D** ... 36
- **Transducer model: C8x Operating mode: M mode** ... 37
- **Transducer model: C8x Operating mode: Color/CPD** .. 38
- **Transducer model: C8x Operating mode: PW Doppler** .. 39
Transducer model: C11x Operating mode: PW Doppler ... 40
Transducer model: C35x Operating mode: 2D ... 41
Transducer model: C35x Operating mode: PW Doppler ... 42
Transducer model: HFL38xi (Ophthalmic use) Operating mode: 2D ... 43
Transducer model: HFL38xi (Ophthalmic use) Operating mode: M mode 44
Transducer model: HFL38xi (Ophthalmic use) Operating mode: Color/CPD 45
Transducer model: HFL38xi (Ophthalmic use) Operating mode: PW Doppler 46
Transducer model: HFL38xi Operating mode: 2D .. 47
Transducer model: HFL38xi Operating mode: M mode ... 48
Transducer model: HFL38xi Operating mode: Color/CPD .. 49
Transducer model: HFL38xi Operating mode: PW Doppler .. 50
Transducer model: HFL50x Operating mode: 2D .. 51
Transducer model: HFL50x Operating mode: M mode ... 52
Transducer model: HFL50x Operating mode: Color ... 53
Transducer model: HFL50x Operating mode: PW Doppler .. 54
Transducer model: HSL25x (Ophthalmic use) Operating mode: 2D ... 55
Transducer model: HSL25x (Ophthalmic use) Operating mode: M mode 56
Transducer model: HSL25x (Ophthalmic use) Operating mode: Color/CPD 57
Transducer model: HSL25x (Ophthalmic use) Operating mode: PW Doppler 58
Transducer model: HSL25x Operating mode: 2D .. 59
Transducer model: HSL25x Operating mode: Color/CPD .. 60
Transducer model: HSL25x Operating mode: PW Doppler .. 61
Transducer model: ICTx Operating mode: PW Doppler ... 62
Transducer model: L25x (Ophthalmic use) Operating mode: 2D ... 63
Transducer model: L25x (Ophthalmic use) Operating mode: M mode 64
Transducer model: L25x (Ophthalmic use) Operating mode: Color/CPD 65
Transducer model: L25x (Ophthalmic use) Operating mode: PW Doppler 66
Transducer model: L25x Operating mode: 2D .. 67
Transducer model: L25x Operating mode: Color/CPD ... 68
Transducer model: L25x Operating mode: PW Doppler ... 69
Transducer model: L38xi Operating mode: 2D .. 70
Transducer model: L38xi Operating mode: M mode ... 71
Transducer model: L38xi Operating mode: Color/CPD ... 72
Transducer model: L38xi Operating mode: PW Doppler ... 73
Transducer model: P10x Operating mode: Color ... 74
Transducer model: P10x Operating mode: CW Doppler ... 75
Transducer model: P10x Operating mode: PW Doppler ... 76
Transducer model: rC60xi Operating mode: 2D .. 77
Transducer model: rC60xi Operating mode: M mode ... 78
Transducer model: rC60xi Operating mode: Color/CPD ... 79
Transducer model: rC60xi Operating mode: PW Doppler ... 80
Transducer model: rP19x (Orbital use) Operating mode: 2D ... 81
Transducer model: rP19x (Orbital use) Operating mode: M mode ... 82
Transducer model: rP19x (Orbital use) Operating mode: Color/CPD .. 83
Transducer model: rP19x (Orbital use) Operating mode: PW Doppler 84
Transducer model: rP19x Operating mode: 2D .. 85
Transducer model: rP19x Operating mode: M mode ... 86
<table>
<thead>
<tr>
<th>Transducer model: rP19x Operating mode: Color/CPD</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transducer model: rP19x Operating mode: CW Doppler</td>
<td>88</td>
</tr>
<tr>
<td>Transducer model: rP19x Operating mode: PW Doppler</td>
<td>89</td>
</tr>
<tr>
<td>Transducer model: TEExi Operating mode: CW Doppler</td>
<td>90</td>
</tr>
<tr>
<td>Transducer model: TEExi Operating mode: PW Doppler</td>
<td>91</td>
</tr>
</tbody>
</table>
Table 2: Transducer model: C8x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>surface</td>
<td>Below</td>
<td>surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.48</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>9524</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>18.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>264</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>18.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>25.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.11</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Exam type</td>
<td>Pro</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>2.5−3.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MB</td>
<td>Off</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 3: Transducer model: C8x Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) at (z_{MI}) (MPa)</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>5.07</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) at (z_{pii,\alpha}) (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) at (z_{pii,\alpha}) or (z_{sii,\alpha}) (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) at (z_{pii}) or (z_{sii}) (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) at (z_{pii}) (MPa)</td>
<td>3.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 4: Transducer model: C8x Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4.82</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2548</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sili} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.1</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic parameters

- $p_{r,\alpha}$ at z_{MI} (MPa)
- P (mW)
- P_{1x1} (mW)
- z_s (cm)
- z_b (cm)
- z_{MI} (cm)
- $z_{pii,\alpha}$ (cm)
- f_{awf} (MHz)
- prr (Hz)
- srr (Hz)
- n_{pps}
- $I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)
- $I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)
- I_{spta} at z_{pii} or z_{sili} (mW/cm²)
- p_r at z_{pii} (MPa)

Other information

- Exam type: Pro
- Mode: CVD
- 2D optimization/depth (cm): Pen/1.5–1.9
- Color optimization/PRF (Hz): High/any
- Color box position/size: Narrow/any

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 5: Transducer model: C8x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.0</td>
<td>(a)</td>
<td></td>
<td>1.4</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.5</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr,α at zMI (MPa)</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>23.1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td>#</td>
<td></td>
<td>23.1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zMI (cm)</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpii,α (cm)</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td>4.80</td>
<td>#</td>
<td>4.80</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipa,α at zpii,α (W/cm²)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta,α at zpii,α or zsi,α (mW/cm²)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta at zpii or zsi (mW/cm²)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr at zpii (MPa)</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Pro</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 4</td>
<td>Zone 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td></td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.5</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>24.6</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4.37</td>
<td>4.36</td>
</tr>
<tr>
<td>Prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 7: Transducer model: C35x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At</td>
<td>Below</td>
<td>At</td>
<td>Below</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3.45</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Exam type**: Msk
- **Optimization**: Res
- **Depth (cm)**: 8.3
- **MB**: N/A

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 8: Transducer model: C35x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>1.5</td>
<td>2.6</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>At surface</td>
<td></td>
<td>1.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below surface</td>
<td></td>
<td>2.6</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>72.8</td>
<td>47.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>71.1</td>
<td>47.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td>4.35</td>
<td>4.37</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td></td>
<td>Spine</td>
<td>Spine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td></td>
<td>Zone 5</td>
<td>Zone 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>6250</td>
<td>15625</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.007</td>
<td>0.007</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0.77</td>
<td>0.77</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0.21</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.59</td>
<td>6.75</td>
<td>6.75</td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_{r} (Hz)</td>
<td>11339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_{r} (Hz)</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.003</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.003</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td>0.087</td>
<td>0.064</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td>0.087</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.58</td>
<td>6.86</td>
<td>6.78</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>1.5</td>
<td>6.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 11: Transducer model: HFL38xi (Ophthalmic use) Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
<td>Below surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.02</td>
<td>0.02</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(p_{r,\alpha}) at (z_{MI}) (MPa)</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>1.11</td>
<td>1.11</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>0.75</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>5.34</td>
<td>5.37</td>
<td>5.37</td>
<td>#</td>
</tr>
<tr>
<td>(pr) (Hz)</td>
<td>4537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) at (z_{pii,\alpha}) (W/cm²)</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) at (z_{pii,\alpha}) or (z_{sii,\alpha}) (mW/cm²)</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) at (z_{pii}) or (z_{sii}) (mW/cm²)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) at (z_{pii}) (MPa)</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic parameters

- \(pr_{r,\alpha} \) at \(z_{MI} \) (MPa)
- \(P \) (mW)
- \(P_{1x1} \) (mW)
- \(z_{s} \) (cm)
- \(z_{b} \) (cm)
- \(z_{MI} \) (cm)
- \(z_{pii,\alpha} \) (cm)
- \(f_{awf} \) (MHz)
- \(pr \) (Hz)
- \(srr \) (Hz)
- \(n_{pps} \)
- \(I_{pa,\alpha} \) at \(z_{pii,\alpha} \) (W/cm²)
- \(I_{spta,\alpha} \) at \(z_{pii,\alpha} \) or \(z_{sii,\alpha} \) (mW/cm²)
- \(I_{spta} \) at \(z_{pii} \) or \(z_{sii} \) (mW/cm²)
- \(p_{r} \) at \(z_{pii} \) (MPa)

Other information

- \(pr \) (Hz)
- \(srr \) (Hz)
- \(n_{pps} \)
- \(I_{pa,\alpha} \) at \(z_{pii,\alpha} \) (W/cm²)
- \(I_{spta,\alpha} \) at \(z_{pii,\alpha} \) or \(z_{sii,\alpha} \) (mW/cm²)
- \(I_{spta} \) at \(z_{pii} \) or \(z_{sii} \) (mW/cm²)
- \(p_{r} \) at \(z_{pii} \) (MPa)

Operating controls

- Exam type: Oph
- Mode: CVD
- 2D optimization/depth (cm): Pen/1.5
- Color optimization/PRF (Hz): High/7813
- Color box position/size: Bottom/small

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 12: Transducer model: HFL38xi (Ophthalmic use) Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>0.18</td>
<td>0.09</td>
<td>0.17</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.09</td>
<td>0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.34</td>
<td>5.33</td>
<td>5.33</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1302</td>
<td>10417</td>
<td>10417</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 13: Transducer model: HFL38xi Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r, \alpha}$ at z_{MI} (MPa)</td>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.36</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_r (Hz)</td>
<td>2127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ at $z_{pii, \alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, \alpha}$ at $z_{pii, \alpha}$ or $z_{sii, \alpha}$ (mW/cm²)</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>19.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 14: Transducer model: HFL38xi Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{a} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>333.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 15: Transducer model: HFL38xi Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r,α at z_{MI} (MPa)</td>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>40.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam type</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>2D optimization/depth (cm)</td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
</tr>
<tr>
<td>Color box position/size</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 16: Transducer model: HFL38xi Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>1.1</td>
<td>2.2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.1</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47.7</td>
<td>47.7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47.7</td>
<td>47.7</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.34</td>
<td>4.86</td>
<td>4.86</td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>102.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>210.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>3.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Nrv</td>
<td>Art</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>3125</td>
<td>3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 17: Transducer model: HFL50x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.3 (a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r,α at z_{MI} (MPa)</td>
<td>3.051</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{siii,\alpha}$ (mW/cm²)</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{siii} (mW/cm²)</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td></td>
<td></td>
<td></td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 18: Transducer model: HFL50x Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>3.14</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.75</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>333.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at $z_{ pii}$ (MPa)</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 19: Transducer model: HFL50x Operating mode: Color

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p<sub>r</sub>,<sub>α</sub> at z<sub>M1</sub> (MPa)</td>
<td>3.05</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P<sub>1x1</sub> (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z<sub>s</sub> (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z<sub>b</sub> (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z<sub>M1</sub> (cm)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z<sub>pii,α</sub> (cm)</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f<sub>awf</sub> (MHz)</td>
<td>5.36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>8233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n<sub>pps</sub></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l<sub>pα,α</sub> at z<sub>pii,α</sub> (W/cm<sup>2</sup>)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l<sub>spta,α</sub> at z<sub>pii,α</sub> or z<sub>sii,α</sub> (mW/cm<sup>2</sup>)</td>
<td>26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l<sub>spta</sub> at z<sub>pii</sub> or z<sub>sii</sub> (mW/cm<sup>2</sup>)</td>
<td>39.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p<sub>r</sub> at z<sub>pii</sub> (MPa)</td>
<td>3.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization/depth (cm)</td>
<td>Low/3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephelic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 20: Transducer model: HFL50x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>1.1</td>
<td></td>
<td>1.9</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>42.6</td>
<td></td>
<td>42.6</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>42.6</td>
<td></td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5.34</td>
<td>5.34</td>
<td>5.34</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>p_{r} pr (Hz)</td>
<td></td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{PPS}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>599.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at $z_{ pii}$ (MPa)</td>
<td></td>
<td>3.23</td>
<td></td>
<td>3.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 21: Transducer model: HSL25x (Ophthalmic use) Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>T_{IS}</th>
<th>T_{IB}</th>
<th>T_{IC}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At</td>
<td>Below</td>
<td>At</td>
<td>Below</td>
</tr>
<tr>
<td></td>
<td>surface</td>
<td>surface</td>
<td>surface</td>
<td>surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>$p_{r,a}$ at z_{MI} (MPa)</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1.62</td>
<td>1.62</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0.70</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7.65</td>
<td>6.97</td>
<td>6.97</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_r (Hz)</td>
<td></td>
<td>12580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_r (Hz)</td>
<td></td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>1.9</td>
<td>4.3</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 22: Transducer model: HSL25x (Ophthalmic use) Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.01</td>
<td>0.02</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.010</td>
<td>0.009</td>
<td>0.013</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.45</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7.59</td>
<td>6.25</td>
<td>6.25</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>1.9</td>
<td>4.3</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.11</td>
<td>6.10</td>
<td>6.10</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ppps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm2)</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm2)</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} at z_{pii} or z_{sii} (mW/cm2)</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D optimization/depth (cm)</td>
<td>Pen/1.9</td>
<td>Pen/5.1</td>
<td>Pen/5.1</td>
<td></td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td>Low/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
<td></td>
</tr>
<tr>
<td>Color box position/size</td>
<td>Def/def</td>
<td>Top/short-wide</td>
<td>Top/short-wide</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>Below surface</th>
<th>TIB At surface</th>
<th>Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.18</td>
<td>0.12</td>
<td>0.21</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.03</td>
<td>6.03</td>
<td>6.03</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>44.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 25: Transducer model: HSL25x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>1.9–2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 26: Transducer model: HSL25x Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times 1}$ (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Acoustic parameters				
p_{rr} (Hz)	3079			
s_{rr} (Hz)	8.0			
n_{pps}	14			
$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)	276			
$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)	47.6			
I_{spta} at z_{pii} or z_{sii} (mW/cm²)	63.9			
p_r at z_{pii} (MPa)	2.78			

Other information				
Exam type	Sup			
Mode	CVD			
2D optimization/depth (cm)	Pen/3.1			
Color optimization/PRF (Hz)	Low/401			
Color box position/size	Def/def			

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 27: Transducer model: HSL25x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.5</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.8</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.8</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>28.1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>28.1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>0.75</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>6.00</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic information</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 28: Transducer model: ICTx Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.2</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>16.3</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>16.3</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>4.36</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td></td>
<td>Zone 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 29: Transducer model: L25x (Ophthalmic use) Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>p_r, a at z_{MI} (MPa)</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1.62</td>
<td>1.62</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0.70</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7.65</td>
<td>6.97</td>
<td>6.97</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>12580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, a}$ at $z_{pii, a}$ (W/cm²)</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, a}$ at $z_{pii, a}$ or $z_{sii, a}$ (mW/cm²)</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Optimization</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>1.9</td>
<td>4.3</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 30: Transducer model: L25x (Ophthalmic use) Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.010</td>
<td>0.020</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0.45</td>
<td>0.45</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0.45</td>
<td>0.45</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7.59</td>
<td>6.25</td>
<td>6.25</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating controls

- Exam type: Oph
- Optimization: Res, Pen
- Depth (cm): 1.9, 4.3

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 31: Transducer model: L25x (Ophthalmic use) Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2.9</td>
<td>2.9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.11</td>
<td>6.10</td>
<td>6.10</td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D optimization/depth (cm)</td>
<td>Pen/1.9</td>
<td>Pen/5.1</td>
<td>Pen/5.1</td>
<td></td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td>Low/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
<td></td>
</tr>
<tr>
<td>Color box position/size</td>
<td>Def/def</td>
<td>Top/short-wide</td>
<td>Top/short-wide</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 32: Transducer model: L25x (Ophthalmic use) Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td></td>
<td>0.18</td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td></td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4.0</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4.0</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6.03</td>
<td>6.03</td>
<td>6.03</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td>44.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td></td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td></td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 33: Transducer model: L25x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.2</td>
<td>(a)</td>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>pr,α at zMI (MPa)</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zS (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zb (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZMI (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpii,α (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td>6.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prr (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srr (Hz)</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npss</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpa,α at zpii,α (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta,α at zpii,α or zsi,α (mW/cm²)</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta at zpii or zsii (mW/cm²)</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr at zpii (MPa)</td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 34: Transducer model: L25x Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
| &nbs...
Table 35: Transducer model: L25x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.7</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>0.9</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Acoustic parameters

<table>
<thead>
<tr>
<th>Index label</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
</tr>
</tbody>
</table>

Other information

<table>
<thead>
<tr>
<th>Index label</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm2)</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm2)</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm2)</td>
<td>#</td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>#</td>
</tr>
</tbody>
</table>

Operating controls

<table>
<thead>
<tr>
<th>Index label</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam type</td>
<td>Vas/Ven/Nrv</td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>8</td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>1.5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>3.3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0.8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4.82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1312</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>10.3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>10.2</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>13.5</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>3.79</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 37: Transducer model: L38xi Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>(a)</td>
<td>1.2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>3.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5.76</td>
<td>#</td>
<td>5.20</td>
<td>#</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm2)</td>
<td>776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{si,\alpha}$ (mW/cm2)</td>
<td>181.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{si} (mW/cm2)</td>
<td>280.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>4.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Gen</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4.7</td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 38: Transducer model: L38xi Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ at z_{MI} (MPa)</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>64.7</td>
<td>64.7</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>49.0</td>
<td>49.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4.82</td>
<td>4.83</td>
<td>4.83</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ at $z_{pii,a}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ at $z_{pii,a}$ or $z_{sii,a}$ (mW/cm²)</td>
<td>35.6</td>
<td>47.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.79</td>
</tr>
</tbody>
</table>

Acoustic parameters

- **Exam type**: Art, Ven, Ven
- **Mode**: CVD, CVD, CVD
- **2D optimization/depth (cm)**: Pen/2.0, Pen/3.1, Pen/3.1
- **Color optimization/PRF (Hz)**: Low/393, Low/2315, Low/2315
- **Color box position/size**: Def/def, Bottom/short-narrow, Bottom/short-narrow

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 39: Transducer model: L38xi Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>2.6</td>
<td></td>
<td>3.7</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>114.5</td>
<td>114.5</td>
<td>114.5</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1X1} (mW)</td>
<td></td>
<td>114.5</td>
<td>114.5</td>
<td>114.5</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>4.06</td>
<td>4.78</td>
<td>4.78</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>495.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Art</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 0</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>10417</td>
<td>10417</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 40: Transducer model: P10x Operating mode: Color

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1.1</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>42.2</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>3.89</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td></td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td>CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D optimization/depth</td>
<td></td>
<td>Pen/8.9/narrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td></td>
<td>Low/2033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color box position/size</td>
<td></td>
<td>Top/short-wide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.7</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>34.8</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td>Exam type</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample volume position</td>
<td>Zone 3</td>
<td>Zone 0</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 42: Transducer model: P10x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
<td>1.9</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.1</td>
<td>0.6</td>
<td>0.6</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>34.4</td>
<td>31.9</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>34.4</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3.87</td>
<td>6.86</td>
<td>3.84</td>
<td>3.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>729.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>2.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Crd</td>
<td>Crd</td>
<td>Abd</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 2</td>
<td>Zone 6</td>
<td>Zone 1</td>
<td>Zone 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1562</td>
<td>1008</td>
<td>1953</td>
<td>15625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDI</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 43: Transducer model: rC60xi Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r, α at z_{MI} (MPa)</td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2.36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ at $z_{pii, \alpha}$ (W/cm²)</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha}$ at $z_{pii, \alpha}$ or $z_{sii, \alpha}$ (mW/cm²)</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>44.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td>3.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ at $z_{pii, \alpha}$ (W/cm²)</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (multi beam)</td>
<td>Off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>(a)</td>
<td>1.0</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0.36</td>
</tr>
<tr>
<td>(p_{r,\alpha}) at (z_{MI}) (MPa)</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>69.8</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>25.9</td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>2.66</td>
<td>#</td>
<td>2.89</td>
<td>#</td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) at (z_{pii,\alpha}) (W/cm²)</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) at (z_{pii,\alpha}) or (z_{sii,\alpha}) (mW/cm²)</td>
<td>144.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) at (z_{pii}) or (z_{sii}) (mW/cm²)</td>
<td>328.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) at (z_{pii}) (MPa)</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Abd</td>
<td></td>
<td></td>
<td>Msk</td>
</tr>
<tr>
<td>Optimization</td>
<td>Pen</td>
<td></td>
<td></td>
<td>Pen</td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>6.6</td>
<td></td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td>THI</td>
<td>Off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 45: Transducer model: rC60xi Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185.8</td>
<td>185.8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107.5</td>
<td>107.5</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2.22</td>
<td>2.21</td>
<td>2.21</td>
<td>#</td>
</tr>
<tr>
<td>Exam type</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D optimization/depth (cm)/THI</td>
<td>Gen/11 / On</td>
<td>Gen/4.7 /Off</td>
<td>Gen/4.7 /Off</td>
<td></td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td>Low/342</td>
<td>High/3125</td>
<td>High/3125</td>
<td></td>
</tr>
<tr>
<td>Color box position/size</td>
<td>Bottom/tall-narrow</td>
<td>Bottom/tall-narrow</td>
<td>Bottom/tall-narrow</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 46: Transducer model: rC60xi Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td></td>
<td>1.2</td>
<td>2.0</td>
<td>4.0</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.7</td>
<td>2.0</td>
<td>0.8</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td></td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW) &</td>
<td>386.5</td>
<td>291.8</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>67.5</td>
<td>74.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2.2</td>
<td>2.23</td>
<td>2.23</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>399.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td>793.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td></td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td></td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td></td>
<td>Zone 3</td>
<td>Zone 6</td>
<td>Zone 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>1302</td>
<td>2604</td>
<td>2604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.) — Data are not applicable for this transducer/mode.
Table 47: Transducer model: rP19x (Orbital use) Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α at z_{MI} (MPa)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4.4</td>
<td>4.4</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2.06</td>
<td>2.06</td>
<td>2.06</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_r (Hz)</td>
<td></td>
<td>6413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the
reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 48: Transducer model: rP19x (Orbital use) Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.009</td>
<td>0.020</td>
<td>0.021</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>0.006</td>
<td>0.009</td>
<td>0.006</td>
</tr>
<tr>
<td>p_{r,\alpha} at z_{MI} (MPa)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0.67</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3.15</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>z_{pii,\alpha} (cm)</td>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>2.06</td>
<td>1.83</td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

82 Acoustic output tables
Table 49: Transducer model: rP19x (Orbital use) Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.17</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,MI}$ (MPa)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>15.47</td>
<td>15.47</td>
<td>15.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>9.50</td>
<td>9.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_{II,MI}$ (cm)</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{II,MI}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2.14</td>
<td>2.11</td>
<td>2.11</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_r (Hz)</td>
<td>5443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{pp} (Hz)</td>
<td>15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,MI}$ at $z_{II,MI}$ (W/cm²)</td>
<td></td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,MI}$ at $z_{II,MI}$ or $z_{III,MI}$ (mW/cm²)</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{II} or z_{III} (mW/cm²)</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{II} (MPa)</td>
<td></td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D optimization/depth (cm)</td>
<td>Gen/4.7</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td></td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td>Low/1157</td>
<td>Low/3125</td>
<td>Low/3125</td>
<td>Low/3125</td>
<td>Low/3125</td>
<td></td>
</tr>
<tr>
<td>Color box position/size</td>
<td>Def/def</td>
<td>Top/short-wide</td>
<td>Top/short-wide</td>
<td>Top/short-wide</td>
<td>Top/short-wide</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 50: Transducer model: rP19x (Orbital use) Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>0.18</td>
<td>0.27</td>
<td></td>
<td>0.59</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p (mW)</td>
<td></td>
<td></td>
<td></td>
<td>37.4</td>
<td>35.3</td>
<td>37.4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td>17.5</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.35</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td>2.23</td>
<td>2.23</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Acoustic parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>0.27</td>
</tr>
<tr>
<td>P (mW)</td>
<td>37.4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>17.5</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>2.5</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>3.35</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3.5</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3.5</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Other information

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>2.49</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>28.9</td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>69.3</td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Exam type

| Orb | Orb | Orb | Orb |

Sample volume size (mm)

| 5 | 14 | 14 | 14 |

Sample volume position

| Zone 6 | Zone 7 | Zone 5 | Zone 7 |

PRF (Hz)

| 1953 | 1953 | 1953 | 1953 |

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.

No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)

— Data are not applicable for this transducer/mode.
Table 51: Transducer model: rP19x Operating mode: 2D

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>152.6</td>
<td>152.6</td>
<td>177.8</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>96.1</td>
<td>96.1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>1.99</td>
<td>2.08</td>
<td>2.08</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>6186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>48.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>38.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>2.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Abd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Optimization</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td>Pen</td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.7</td>
</tr>
<tr>
<td>MB/THI</td>
<td>Off/Off</td>
<td>Off/On</td>
<td>Off/On</td>
<td>Off/On</td>
</tr>
<tr>
<td>Sector width</td>
<td>N/A</td>
<td>Narrow</td>
<td>Narrow</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 52: Transducer model: rP19x Operating mode: M mode

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS At surface</th>
<th>TIS Below surface</th>
<th>TIB At surface</th>
<th>TIB Below surface</th>
<th>TIC At surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>(a)</td>
<td>1.7</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#</td>
<td>0.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α at z_{MI} (MPa)</td>
<td>2.1</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>55.0</td>
<td>62.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>4.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1.99</td>
<td>#</td>
<td>1.81</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spata,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>73.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spata} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>140.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>TCD</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>7.5</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 53: Transducer model: rP19x Operating mode: Color/CPD

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
<td>Below surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Index component value</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>128.0</td>
<td>128.0</td>
<td>170.5</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>115.6</td>
<td>115.6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4.8</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>$z_{p_{ii,\alpha}}$ (cm)</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1.99</td>
<td></td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>pr_r (Hz)</td>
<td>505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{p_{ii,\alpha}}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ at $z_{p_{ii,\alpha}}$ or $z_{s_{si,\alpha}}$ (mW/cm²)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} at $z_{p_{ii}}$ or $z_{s_{si}}$ (mW/cm²)</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at $z_{p_{ii}}$ (MPa)</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic parameters

<table>
<thead>
<tr>
<th>Exam type</th>
<th>Abd</th>
<th>TCD</th>
<th>TCD</th>
<th>Crd</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mode/THI</th>
<th>CVD/Off</th>
<th>CVD/Off</th>
<th>CVD/Off</th>
<th>CVD/On</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D optimization/depth (cm)/sector width</td>
<td>Gen/10/N/A</td>
<td>Pen/7.5 /N/A</td>
<td>Pen/7.5 /N/A</td>
<td>Gen/16/ narrow</td>
</tr>
<tr>
<td>Color optimization/PRF (Hz)</td>
<td>Low/300</td>
<td>Low/3125</td>
<td>Low/3125</td>
<td>High/5208</td>
</tr>
<tr>
<td>Color box position/size</td>
<td>Def/def</td>
<td>Def/narrow</td>
<td>Def/narrow</td>
<td>Def/def</td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 54: Transducer model: rP19x Operating mode: CW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>1.2</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>125.4</td>
<td>125.4</td>
<td>125.4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>125.4</td>
<td>125.4</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 55: Transducer model: rP19x Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>1.3</td>
<td>1.8</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td>1.3</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ at z_{MI} (MPa)</td>
<td>1.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>253.7</td>
<td>240.2</td>
<td>251.1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>118.6</td>
<td>116.0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2.14</td>
<td>2.23</td>
<td>2.23</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ at $z_{pii,\alpha}$ or $z_{si,\alpha}$ (mW/cm²)</td>
<td>374.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} at z_{pii} or z_{si} (mW/cm²)</td>
<td>594.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td></td>
<td>2.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Acoustic parameters**

- **Other information**

- **Operating controls**

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 56: Transducer model: TEExi Operating mode: CW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.7</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>$p_{r,c}$ at z_{MI} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,c}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,c}$ at $z_{pii,c}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,c}$ at $z_{pii,c}$ or $z_{sii,c}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} at z_{pii} or z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} at z_{sii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Table 57: Transducer model: TEExi Operating mode: PW Doppler

<table>
<thead>
<tr>
<th>Index label</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At surface</td>
<td>Below surface</td>
<td>At surface</td>
</tr>
<tr>
<td>Maximum index value</td>
<td>(a)</td>
<td>(a)</td>
<td>1.4</td>
<td>(b)</td>
</tr>
<tr>
<td>Index component value</td>
<td>#</td>
<td>#</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Acoustic parameters</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α at z_{MI} (MPa)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>35.8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>35.8</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Other information</td>
<td>#</td>
<td>#</td>
<td>3.81</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ at $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ at $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} at z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r at z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exaam type</td>
<td></td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume size (mm)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample volume position</td>
<td></td>
<td>Zone 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>2604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) This index is not required for this operating mode; value is <1.
(b) This transducer is not intended for transcranial or neonatal cephalic uses.
No data are reported for this operating condition since the global maximum index value is not reported for the reason listed. (Reference global maximum index value line.)
— Data are not applicable for this transducer/mode.
Terms used in the acoustic output tables

Table 1-1: Terms used in the acoustic output tables

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Attenuation coefficient used for derating. Equal to 0.3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Acoustic working frequency.</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$</td>
<td>Attenuated pulse-average intensity.</td>
</tr>
<tr>
<td>I_{spta}</td>
<td>Spatial-peak temporal-average intensity.</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$</td>
<td>Attenuated spatial-peak temporal-average intensity.</td>
</tr>
<tr>
<td>MI</td>
<td>Mechanical index.</td>
</tr>
<tr>
<td>P</td>
<td>Output power.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Bounded-square output power.</td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>Attenuated peak-rarefractional acoustic pressure.</td>
</tr>
<tr>
<td>p_r</td>
<td>Peak-rarefractional acoustic pressure.</td>
</tr>
<tr>
<td>pii</td>
<td>Pulse-intensity integral.</td>
</tr>
<tr>
<td>pii,α</td>
<td>Attenuated pulse-intensity integral.</td>
</tr>
<tr>
<td>$npps$</td>
<td>Number of pulses per ultrasonic scan line.</td>
</tr>
<tr>
<td>prr</td>
<td>Pulse repetition rate.</td>
</tr>
<tr>
<td>srr</td>
<td>Scan repetition rate.</td>
</tr>
<tr>
<td>TI</td>
<td>Thermal index.</td>
</tr>
<tr>
<td>TIB</td>
<td>Bone thermal index.</td>
</tr>
<tr>
<td>TIC</td>
<td>Cranial-bone thermal index.</td>
</tr>
<tr>
<td>TIS</td>
<td>Soft-tissue thermal index.</td>
</tr>
<tr>
<td>z_b</td>
<td>Depth for TIB.</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>Depth for mechanical index.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Depth for peak pulse-intensity integral.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Depth for peak attenuated pulse-intensity integral.</td>
</tr>
</tbody>
</table>
Table 1-1: Terms used in the acoustic output tables

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{sii}</td>
<td>Depth for peak sum of pulse-intensity integrals.</td>
</tr>
<tr>
<td>$Z_{sii,\alpha}$</td>
<td>Depth for peak sum of attenuated pulse-intensity integrals.</td>
</tr>
<tr>
<td>Z_S</td>
<td>Depth for TIS.</td>
</tr>
</tbody>
</table>

Glossary (SonoSite Edge II)

The IMT term has been removed from the SonoSite Edge II user guide abbreviation list; the revision will be made in the next update.
Errata zum Benutzerhandbuch zu SonoSite Edge II und SonoSite SII

Einführung ... 92
 Dokumentkonventionen ...92
 Weiterführende Informationen ..92
Weiterführende Informationen (SonoSite Edge II) ..93
Erste Schritte ..93
 Verwendungszweck ..93
Systemeinrichtung .. 93
 Verbindungseinstellungen (SonoSite SII) ...93
 Verbindungseinstellung (SonoSite Edge II) ...93
 Netzwerkstatus-Einstellungen ..94
Bildgebung ... 94
 Verfügbarkeit von Bildgebungsmodule und Untersuchungstypen je nach Schallkopf (SonoSite SII)94
Messungen und Berechnungen (SonoSite SII) ..94
 Allgemeine Berechnungen ..94
Referenzmaterial für Messungen (SonoSite SII) ..95
 Messgenauigkeit ...96
 Veröffentlichungen zu Messungen und Terminologie ..96
Reinigung und Desinfektion ... 97
Sicherheit ... 97
 Klinische Sicherheit ...97
 Elektromagnetische Verträglichkeit ..98
 Drahtlose Übertragung ...100
 Wireless-USB-Dongle (Panda) ...100
 Wireless- und Sicherheitsmodul (Laird) ...101
 Kennzeichnungssymbole ...113
 Technische Daten ..122
 Unterstützte Schallköpfe (SonoSite SII) ...122
 Normen ..123
 Elektromechanische Sicherheitsstandards ..123
Schallausgangsleistung ...124
 ALARA-Prinzip ..124
 Anwendung des ALARA-Prinzip ...124
 Direkte Steuerelemente ..125
 Ausgangsleistungsanzeige ..125
 Sachverwandte Leitfäden ...125
 Messung der Schallausgangsleistung ..126
 In der Schallausgangsleistungsstabelle verwendete Begriffe ..184
Glossar (SonoSite Edge II) ..185
Einführung

Dokumentkonventionen

Für das Dokument gelten folgende Konventionen:

- Ein **WARNHINWEIS** beschreibt die notwendigen Vorsichtsmaßnahmen zur Vermeidung einer Verletzung oder eines tödlichen Unfalls.
- Ein **Vorsichtshinweis** beschreibt die notwendigen Vorsichtsmaßnahmen zum Schutz der Produkte.
- Ein **Hinweis** enthält ergänzende Informationen.
- Nummerierte oder mit Buchstaben versehene Schritte müssen in einer bestimmten Reihenfolge durchgeführt werden.
- Listen mit Gliederungspunkten stellen Informationen in einem Listenformat dar, schreiben jedoch keine Reihenfolge vor.
- Einzelschrittverfahren beginnen mit ◆.

Eine Beschreibung der Kennzeichnungssymbole des Produkts ist unter „Kennzeichnungssymbole“ im Benutzerhandbuch zu finden.

Weiterführende Informationen

Der technische Kundendienst von FUJIFILM SonoSite ist wie folgt erreichbar:

Telefon

(USA und Kanada) +1-877 657 8118

(außerhalb USA und Kanada) +1-425 951 1330, oder wenden Sie sich an Ihren zuständigen Kundendienstvertreter

Fax

+1-425 951 6700

E-Mail

ffss-service@fujifilm.com

Web

www.sonosite.com

Europäisches Servicezentrum

Hauptstelle: +31 20 751 2020

Kundendienst auf Englisch: +44 14 6234 1151

Kundendienst auf Französisch: +33 1 8288 0702

Kundendienst auf Deutsch: +49 69 8088 4030

Kundendienst auf Italienisch: +39 02 9475 3655

Kundendienst auf Spanisch: +34 91 123 8451

Asiatisches Servicezentrum

+65 6380-5581

Gedruckt in den USA.
Weiterführende Informationen (SonoSite Edge II)

 Folgendes wurde im Benutzerhandbuch zum System SonoSite Edge II korrigiert; die Revision wird mit der nächsten Aktualisierung vorgenommen.

 E-Mail ffss-service@fujifilm.com

Erste Schritte

 Folgender Inhalt war in den Benutzerhandbüchern der Systeme SonoSite Edge II und SonoSite SII nicht enthalten oder inkorrekt; die Revisionen werden mit der nächsten Aktualisierung vorgenommen.

Verwendungszweck

Anwendungen für Prostatauntersuchungen

Die Prostata und angrenzende anatomische Strukturen können auf mögliche Pathologien untersucht werden.

Anwendungen für Untersuchungen oberflächlicher Strukturen

Systemeinrichtung

Verbindungseinstellungen (SonoSite SII)

Alle Verweise auf PDAS müssen im Benutzerhandbuch zum System SonoSite SII zu SiteLink geändert werden; die Revision wird mit der nächsten Aktualisierung vorgenommen.

Verbindungseinrichtung (SonoSite Edge II)

Das folgende Referenzmaterial wurde im Benutzerhandbuch zum System SonoSite Edge II aktualisiert; die Revision wird mit der nächsten Aktualisierung vorgenommen.

So aktivieren Sie eine kabellose Verbindung:

❖ Siehe Einrichten einer Netzwerkverbindung.
Netzwerkstatus-Einstellungen

Wenn auf dem Bildschirm „Network Status“ (Netzwerkstatus) eine Meldung über ein ausgefallenes kabelloses Gerät angezeigt wird, ist Ihr Netzwerkpasswort möglicherweise abgelaufen. Stellen Sie sicher, dass Sie über ein aktualisiertes Netzwerkpasswort verfügen, bevor Sie Ihr kabelloses Gerät verbinden.

Bildgebung

Der Schallkopf C8x kann auf beiden Systemen SonoSite Edge II und SonoSite SII mit einer Nadelführung verwendet werden.

Verfügbarkeit von Bildgebungsmodi und Untersuchungstypen je nach Schallkopf (SonoSite SII)

³Abkürzungen der Untersuchungstypen: Abd = Abdomen, Art = Arteriell, Bre = Brust, Crd = Herz, Gyn = Gynäkologie, Msk = Muskel-Skelett, Neo = Neonatal, Nrv = Nerv, OB = Geburtshilfe, Oph = Ophthalmisch, Pro = Prostata, SmP = Kleinteile, Spn = Wirbelsäule, Sup = Oberflächlich, Ven = Venös.

³Die Optimierungseinstellungen bei der 2D-Bildgebung sind Res, Gen und Pen.

Messungen und Berechnungen (SonoSite SII)

Allgemeine Berechnungen

Volumenberechnung

WARNHINWEISE

› Um ungenaue Berechnungen zu vermeiden, sind die korrekte Eingabe der Patientendaten, Datum und Uhrzeit zu prüfen.

› Um Fehldiagnosen oder falsche Patientenergebnisse zu vermeiden, ist vor Beginn einer neuen Patientenuntersuchung und der Durchführung von Berechnungen ein neues Patientenformular aufzurufen. Dadurch werden die Daten des vorherigen Patienten gelöscht. Wenn das Formular des vorherigen Patienten nicht zuerst gelöscht wird, werden seine Daten mit den aktuellen Patientendaten kombiniert.
Für eine Volumenberechnung sind drei 2D-Distanzmessungen erforderlich: D1, D2 und D3. Wenn alle Messungen gespeichert sind, wird das Ergebnis auf dem Bildschirm und im Patientenbericht angezeigt.

Die Volumenflussberechnung kann für die folgenden Untersuchungstypen vorgenommen werden: Abdomen, Arteriell, Brust, Gynäkologie, Muskel-Skelett, Nerv, Kleinteile, Venen und oberflächliche Strukturen.

So berechnen Sie das Volumen:

Für jedes zu messende Bild folgende Schritte ausführen:

1. Bei einem fixierten 2D-Bild **Calcs** (Berechn.) berühren.

2. Für jede benötigte Messung folgende Schritte ausführen:

 a. Wählen Sie den gewünschten Messungsnamen aus dem Berechnungsmenü unter **Volume** (Volumen) aus.

 Wenn die Option **Volume** (Volumen) bei einer Gyn-Untersuchung nicht verfügbar ist, **Gyn** und anschließend **Volumen** (Volumen) auswählen.

 b. Mithilfe des Touchpads oder des Touchscreens den Tasterzirkel positionieren.

 c. Tippen Sie auf **Save Calc** (Berechnung speichern), um die Berechnung zu speichern.

 Neben der gespeicherten Messung wird ein Häkchen angezeigt.

3. Tippen Sie zum Speichern einer abgeschlossenen Berechnung auf **ˌ.**

4. Tippen Sie auf **Back** (Zurück), um die Berechnung zu verlassen.

Referenzmaterial für Messungen (SonoSite SII)

Folgende Informationen waren im Benutzerhandbuch zum System SonoSite SII nicht enthalten; die Revision wird mit der nächsten Aktualisierung vorgenommen.
Messgenauigkeit

Tabelle 1: M-Mode-Messgenauigkeit, Berechnungsgenauigkeit und Wertebereich

Messgenauigkeit und Wertebereich im M-Mode │ Systemtoleranz	Genauigkeit auf Grund von	Testverfahren	Bereich	
Distanz	<± 2 % plus 1 % der vollen Skalaa	Aufnahme	Phantomb	0–26 cm
Zeit	<± 2 % plus 1 % der vollen Skalac	Aufnahme	Phantomd	0,01–10 s
Herzfrequenz	<±/- 2 % plus (volle Skalac * Herzfrequenz/100) %	Aufnahme	Phantomd	5–923 S/min

aVolle Distanzskala bedeutet maximale Bildtiefe.
bEs wurde ein RMI 413a-Modellphantom mit einer Schwächung von 0,7 dB/cm-MHz verwendet.
cVolle Skala für Zeit setzt die Anzeige der Gesamtzeit auf dem graphischen Rollbild voraus.
dEs wurde eine FUJIFILM SonoSite-Spezialtestausrüstung verwendet.

Veröffentlichungen zu Messungen und Terminologie

Allgemeines Referenzmaterial

Hüftwinkel/d:D-Verhältnis

Prozent-Flächenreduktion

\[
% \text{Flächenreduktion} = (1 - A2 \ (\text{cm}^2) / A1 \ (\text{cm}^2)) \times 100
\]

wobei: A1 = Ursprungsfläche des Gefäßes in Quadratzentimetern
A2 = reduzierte Fläche des Gefäßes in Quadratzentimetern
Prozent-Durchmesserreduktion

\[
\text{% Durchmesserreduktion} = \left(1 - \frac{D2 (\text{cm})}{D1 (\text{cm})}\right) \times 100
\]

wobei: $D1 = \text{Ursprungsduermesser des Gefäßes in cm}$

$D2 = \text{reduzierter Durchmesser des Gefäßes in cm}$

Reinigung und Desinfektion

Folgende Website wurde in den Benutzerhandbüchern zu den Systemen SonoSite Edge II und SonoSite SII korrigiert; dieRevisionen werden mit der nächsten Aktualisierung vorgenommen.

www.sonosite.com/products/transducers

Die folgende Fußnote wurde in den Tabellen zur „Reinigung und Desinfektion“ aktualisiert.

Sicherheit

Klinische Sicherheit

Der folgende Warnhinweis wurde in den Benutzerhandbüchern zu den Systemen SonoSite Edge II und SonoSite SII aktualisiert; dieRevisionen werden mit der nächsten Aktualisierung vorgenommen.

WARNHINWEIS

Um Brandgefahr zu vermeiden, darf der Schallkopf nicht zusammen mit hochfrequenten Chirurgiegeräten verwendet werden. Eine solche Gefahr kann im Falle eines Defekts am Anschluss der hochfrequenten chirurgischen Neutralelektrode auftreten.
Elektromagnetische Verträglichkeit

Vorsichtshinweise

 - In der Nähe befindliche Geräte aus- und wieder einschalten, um das störende Gerät zu ermitteln.
 - Das störende Gerät an einem anderen Ort aufstellen oder die Ausrichtung ändern.
 - Den Abstand zwischen dem störenden Gerät und dem Ultraschallsystem vergrößern.
 - Keine Frequenzen, die in einem ähnlichen Frequenzbereich wie die des Ultraschallsystems liegen, verwenden.
 - Geräte, die sehr anfällig für elektromagnetische Störungen sind, entfernen.
 - Die Leistung interner Quellen innerhalb der Einrichtung (z. B. Pager-Systeme) senken.
 - Für elektromagnetische Störungen anfällige Geräte mit Etiketten kennzeichnen.
 - Das Klinikpersonal dahingehend schulen, mögliche Probleme zu erkennen, die durch elektromagnetische Störungen verursacht werden.
 - Elektromagnetische Störungen durch technische Lösungen (z. B. Abschirmung) verhindern oder beseitigen.
 - Die Verwendung von persönlichen Datenübertragungsgeräten (Handys, Computer) in Bereichen einschränken, in denen sich für elektromagnetische Störungen anfällige Geräte befinden.
 - Relevante Informationen zu elektromagnetischen Störungen mit anderen austauschen, besonders beim Kauf neuer Geräte, die Störungen verursachen können.
 - Medizinische Geräte erwerben, welche die Anforderungen der EMV-Normen IEC 60601-1-2 erfüllen.

Drahtlose Übertragung

Die Ultraschallsysteme SonoSite Edge II und SII umfassen zwei drahtlose Lösungen.

- Der Wireless-USB-Dongle (Panda) ist ein kleiner drahtloser Adapter, der in den USB-Anschluss gesteckt wird:
 - An der rechten Seite des Ultraschallsystems Edge II
 - An der oberen Rückseite des Ultraschallsystems SII
- Das Wireless- und Sicherheitsmodul (Laird) ist ein Modul zur Montage:
 - Auf dem Deckel des Ultraschallsystems Edge II; das Modul wird dann mit einem rechtwinkligen USB-Kabel an das System angeschlossen
 - Auf dem Schallkopf-Halterarm des Ultraschallsystems SII; das Modul wird dann mit einem 30-cm-USB-Kabel an das System angeschlossen

Die Übertragungsdaten für jedes Gerät entnehmen Sie bitte den untenstehenden Informationen.

Wireless-USB-Dongle (Panda)

Der Wireless-USB-Dongle verwendet abhängig von den Richtlinien Ihres Landes ISM (Industrial, Scientific, Medical)-Bänder von 2,412 bis 2,4835 GHz. Der Dongle führt die folgenden Übertragungsmethoden aus:

- IEEE 802.11b mit Direct Sequence Spread Spectrum (DSSS) bei 19 dBm: Spitzenwert 54 Mbps, Spitzendurchsatz: 27 Mbps
- IEEE 802.11g mit Orthogonal Frequency Division Multiplexing (OFDM) bei 16 dBm Spitzenwert 54 Mbps, Spitzendurchsatz: 27 Mbps
- IEEE 802.11n mit Orthogonal Frequency Division Multiplexing (OFDM) bei 15 dBm:
 - 1T1R. Spitzenwert: 150 Mbps, Spitzendurchsatz: 90 Mbps
 - 1T2R. Spitzenwert: 300 Mbps, Spitzendurchsatz: Rx 160 Mbps
 - 2T2R. Spitzenwert: 300 Mbps, Spitzendurchsatz: Rx 260 Mbps
Wireless- und Sicherheitsmodul (Laird)

Das Wireless- und Sicherheitsmodul nutzt ISM (Industrial, Scientific and Medical)-Frequenzen von 1,400 bis 2,4835 GHz und von 5,100 bis 5,800 GHz. Das Modul verwendet vier verschiedene Übertragungsmethoden:

- IEEE 802.11a mit orthogonalem Frequenzmultiplexverfahren (OFDM) bei 11 dBm ± 2 dBm bei 54 Mbit/s
- IEEE 802.11b mit Direct Sequence Spread Spectrum (DSSS) bei 16 dBm ± 2,0 dBm bei 11 Mbit/s
- IEEE 802.11g mit orthogonalem Frequenzmultiplexverfahren (OFDM) bei 13 dBm ± 2,0 dBm bei 54 Mbit/s
- IEEE 802.11n mit orthogonalem Frequenzmultiplexverfahren (OFDM) bei 12 dBm ± 2,0 dBm (802.11gn) bei MCS7

Kompatible Zubehörteile und Peripheriegeräte (SonoSite Edge II)

Diese Zubehörteile von FUJIFILM SonoSite und Peripheriegeräte von Drittanbietern können mit dem SonoSite Edge II verwendet werden.

WARNHINWEISE

- Die Verwendung des Zubehörs mit anderen medizinischen Systemen als dem Edge-Ultraschallsystem kann zu erhöhten Emissionen oder verringriger Störfestigkeit des medizinischen Systems führen.
- Die Verwendung von anderem als dem angegebenen Zubehör kann zu erhöhten Emissionen oder verringriger Störfestigkeit des Ultraschallsystems führen.
- Das Ultraschallsystem sollte nicht in privaten Umgebungen verwendet oder an das öffentliche Stromnetz angeschlossen werden.

Tabelle 2: Mit dem Edge II-Ultraschallsystem kompatible Zubehörteile und Peripheriegeräte

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallkopf C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf rC60xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HFL38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tabelle 2: Mit dem Edge II-Ultraschallsystem kompatible Zubehörteile und Peripheriegeräte

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallkopf HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Schallkopf ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L25x Standard/armiert</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Schallkopf L38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L52x³</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Schallkopf P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf rP19x Standard/armiert</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf TEExi</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Barcode-Leser</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Akku für PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Akkupack</td>
<td>–</td>
</tr>
<tr>
<td>Akku-PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Schwarzweißdrucker</td>
<td>–</td>
</tr>
<tr>
<td>Netzkabel für Schwarzweißdrucker</td>
<td>1 m</td>
</tr>
<tr>
<td>Farbdrucker</td>
<td>–</td>
</tr>
<tr>
<td>Netzkabel für Farbdrucker</td>
<td>1 m</td>
</tr>
<tr>
<td>Videokabel für Farbdrucker</td>
<td>1,8 m</td>
</tr>
<tr>
<td>EKG-Ableitungskabel</td>
<td>0,6 m</td>
</tr>
<tr>
<td>EKG-Modul</td>
<td>1,8 m</td>
</tr>
<tr>
<td>EKG-Slave-Kabel</td>
<td>2,4 m</td>
</tr>
<tr>
<td>SonoSite Edge II Dock</td>
<td>–</td>
</tr>
<tr>
<td>SonoSite Edge II-Stativ</td>
<td>–</td>
</tr>
<tr>
<td>Fußschalter</td>
<td>3 m</td>
</tr>
<tr>
<td>Petite-Maus</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>

WARNHINWEISE

- Die Verwendung des Zubehörs mit anderen medizinischen Systemen als dem SonoSite SII-Ultraschallsystem kann zu erhöhten Emissionen oder verringerter Störfestigkeit des medizinischen Systems führen.
- Die Verwendung von anderem als dem angegebenen Zubehör kann zu erhöhten Emissionen oder verringerter Störfestigkeit des Ultraschallsystems führen.

Tabelle 2: Mit dem Edge II-Ultraschallsystem kompatible Zubehörteile und Peripheriegeräte

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzkabel (System)</td>
<td>3 m</td>
</tr>
<tr>
<td>Netzteil mit Gleichstromkabel</td>
<td>2 m</td>
</tr>
<tr>
<td>Netzteil mit Wechselstromkabel</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>–</td>
</tr>
<tr>
<td>Triple Transducer Connect</td>
<td>–</td>
</tr>
<tr>
<td>USB-Funkadapter</td>
<td>–</td>
</tr>
</tbody>
</table>

Für Schallköpfe wird die maximale Kabellänge zwischen den Zugentlastungen gemessen. Die angegebenen Längen enthalten nicht die Kabellängen an den folgenden Stellen: unter den Zugentlastungen, im Schallkopfgehäuse und im Schallkopfstecker.

aDer L52x-Schallkopf ist nur für den tierärztlichen Gebrauch bestimmt.
Tabelle 3: Mit dem SonoSite SII-Ultraschallsystem kompatible Zubehörteile und Peripheriegeräte

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallkopf C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf rC60xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HFL38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Schallkopf ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L25x Standard/armiert</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Schallkopf L38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Schallkopf P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf rP19x Standard/armiert</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Barcode-Leser</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Akku für PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Akkupack</td>
<td>–</td>
</tr>
<tr>
<td>Akku-PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Schwarzweißdrucker</td>
<td>–</td>
</tr>
<tr>
<td>Netzkabel für Schwarzweißdrucker</td>
<td>1 m</td>
</tr>
<tr>
<td>Steuerkabel für Schwarzweißdrucker</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Videokabel für Schwarzweißdrucker</td>
<td>1,9 m</td>
</tr>
<tr>
<td>Fußschalter</td>
<td>3 m</td>
</tr>
<tr>
<td>Fußschalter, USB-Verlängerungskabel</td>
<td>2 m</td>
</tr>
<tr>
<td>SonoSite SII-Stativ</td>
<td>–</td>
</tr>
</tbody>
</table>
Tabelle 3: Mit dem SonoSite SII-Ultraschallsystem kompatible Zubehörteile und Peripheriegeräte (Fortsetzung)

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzkabel (System)</td>
<td>3 m</td>
</tr>
<tr>
<td>Netzteil mit Gleichstromkabel</td>
<td>2 m</td>
</tr>
<tr>
<td>Netzteil mit Wechselstromkabel</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>–</td>
</tr>
<tr>
<td>USB-Funkadapter</td>
<td>–</td>
</tr>
<tr>
<td>USB-Speichergerät</td>
<td>–</td>
</tr>
</tbody>
</table>

Für Schallköpfe wird die maximale Kabellänge zwischen den Zugentlastungen gemessen. Die angegebenen Längen enthalten nicht die Kabellängen an den folgenden Stellen: unter den Zugentlastungen, im Schallkopfgehäuse und im Schallkopfstecker.

Herstellererklärung

In den Tabellen dieses Abschnitts werden die vorgesehene Einsatzumgebung sowie die EMV-Grenzwerte des Systems aufgeführt. Für einen optimalen Betrieb ist sicherzustellen, dass das System in Umgebungen verwendet wird, die in dieser Tabelle beschrieben sind.

Das System ist für den Einsatz in einer elektromagnetischen Umgebung vorgesehen, die den unten aufgeführten Angaben entspricht.

<table>
<thead>
<tr>
<th>Emissionsprüfung</th>
<th>Einhaltung</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF-Emissionen</td>
<td>Gruppe 1</td>
<td>Die Edge-Ultraschallsysteme II und SII nutzen Hochfrequenzenergie nur für interne Funktionen. Daher sind die HF-Emissionen sehr gering und verursachen erwartungsgemäß keine Störungen an in der Nähe befindlichen elektronischen Geräten.</td>
</tr>
<tr>
<td>CISPR 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herstellererklärung
Herstellererklärung

Das System ist für den Einsatz in einer elektromagnetischen Umgebung vorgesehen, die den unten aufgeführten Angaben entspricht.

<table>
<thead>
<tr>
<th>Emissionsprüfung</th>
<th>Einhaltung</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF-Emissionen CISPR 11</td>
<td>Klasse A</td>
<td>Die Edge-Ultraschallsysteme II und SII eignen sich für den Einsatz in allen Einrichtungen, ausgenommen Privathaushalte und andere Einrichtungen, die direkt an das öffentliche Niederspannungsstromnetz angeschlossen sind, das Wohngebäude versorgt.</td>
</tr>
<tr>
<td>Harmonische Schwingungen IEC 61000-3-2</td>
<td>Klasse A</td>
<td></td>
</tr>
<tr>
<td>Spannungsschwankungen/Flackern IEC 61000-3-3</td>
<td>Erfüllt die Anforderungen</td>
<td></td>
</tr>
</tbody>
</table>

Das System ist für den Einsatz in einer elektromagnetischen Umgebung vorgesehen, die den unten aufgeführten Angaben entspricht.

Tabelle 5: Herstellererklärung – Elektromagnetische Störfestigkeit gemäß IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrostatische Entladung gemäß IEC 61000-4-2</td>
<td>± 2,0 kV, ± 4,0 kV, ± 6,0 kV Kontakt, ± 2,0 kV, ± 4,0 kV, ± 8,0 kV Luft</td>
<td>± 2,0 kV, ± 4,0 kV, ± 6,0 kV Kontakt, ± 2,0 kV, ± 4,0 kV, ± 8,0 kV Luft</td>
<td>Das Fußbodenmaterial sollte aus Holz, Beton oder Keramikfliesen bestehen. Bei einem synthetischen Fußbodenbelag sollte die relative Luftfeuchtigkeit mindestens 30 % betragen.</td>
</tr>
<tr>
<td>Schnelle transiente elektrische Stögrößen (Burst) IEC 61000-4-4</td>
<td>± 2 kV am Netz ± 1 kV auf Signalleitungen</td>
<td>± 2 kV am Netz ± 1 kV auf Signalleitungen</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen.</td>
</tr>
<tr>
<td>Stoßspannung IEC 61000-4-5</td>
<td>± 1 kV Leitung(en) zu Leitung(en) ± 2 kV Leitung(en) zu Erde</td>
<td>± 1 kV Leitung(en) zu Leitung(en) ± 2 kV Leitung(en) zu Erde</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungs- schwankungen auf Netzteil-Eingangsleitungen IEC 61000-4-11</td>
<td><5 % U_T (>95 % Abfall in U_T) für 0,5 Zyklen 40 % U_T (60 % Abfall in U_T) für 5 Zyklen 70 % U_T (30 % Abfall in U_T) für 25 Zyklen <5 % U_T (>95 % Abfall in U_T) für 5 s</td>
<td><5 % U_T (>95 % Abfall in U_T) für 0,5 Zyklen 40 % U_T (60 % Abfall in U_T) für 5 Zyklen 70 % U_T (30 % Abfall in U_T) für 25 Zyklen</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen. Wenn die Untersuchung mit dem FUJIFILM SonoSite-Ultraschallsystem auch bei Unterbrechung der Netzspannung fortgesetzt werden muss, sollte das FUJIFILM SonoSite-Ultraschallsystem über eine unterbrechungsfreie Stromversorgung oder einen Akku betrieben werden.</td>
</tr>
<tr>
<td>Magnetfeldstärke mit energietechnischer Frequenz IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Bei verzerrter Bilddarstellung ist es möglicherweise erforderlich, den Abstand zwischen dem FUJIFILM SonoSite-Ultraschallsystem und Magnetfeldern mit energietechnischer Frequenz zu vergrößern oder eine Abschirmvorrichtung für Magnetfelder anzubringen. Die Magnetfeldstärke mit energietechnischer Frequenz sollte am vorgesehenen Installationsort gemessen werden, um sicherzustellen, dass die Grenzwerte eingehalten werden.</td>
</tr>
<tr>
<td>Geleitete Hochfrequenz gemäß IEC 61000-4-6</td>
<td>3 Vrms 150 kHz bis 80 MHz</td>
<td>3 Vrms</td>
<td>Beim Einsatz tragbarer oder mobiler Hochfrequenzgeräte zur Datenübertragung sollte der empfohlene Abstand zu allen Teilen des FUJIFILM SonoSite-Ultraschallsystems (einschließlich Kabel) eingehalten werden, der sich aus der Gleichung für die Frequenz des Senders berechnet. Empfohener Abstand $d = 1,2 \sqrt{P}$</td>
</tr>
</tbody>
</table>
Tabelle 5: Herstellererklärung – Elektromagnetische Störfestigkeit gemäß IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
</table>
| Hochfrequente Strahlung IEC 61000-4-3 | 3 V/m 80 MHz bis 2,5 GHz | 3 V/m 80 MHz bis 2,5 GHz | $d = 1,2 \sqrt{P}$ 80 MHz bis 800 MHz
$d = 2,3 \sqrt{P}$ 800 MHz bis 2,5 GHz
P ist die maximale Ausgangsnennleistung des Senders in Watt (10) gemäß den Angaben des Herstellers, und d ist der empfohlene Abstand in Metern (m). |

Die Feldstärken stationärer Hochfrequenzsender, die bei der elektromagnetischen Untersuchung des Standorts ermittelt wurden, sollten für jeden Frequenzbereich unter dem Grenzwert liegen. In der Nähe von Geräten, die mit diesem Symbol gekennzeichnet sind, können Störungen auftreten:

(IEC 60417 Nr. 417-IEC-5140: „Quelle nicht ionisierender Strahlung“)

Hinweis

a. Die Feldstärken stationärer Sender wie Basisstationen für Funktelefone (Handys/Schnurlostelefone) sowie Sendern für Landfunk, Amateurfunk, UKW/MW-Radio- und Fernsehübertragung können theoretisch nicht genau vorhergesagt werden. Um die durch stationäre Hochfrequenzsender bedingte elektromagnetische Umgebung zu beurteilen, sollte eine elektromagnetische Untersuchung des Aufstellungsorts in Betracht gezogen werden. Wenn die gemessene Feldstärke am Einsatzort des FUJIFILM SonoSite-Ultraschallsystems die entsprechenden Grenzwerte für Hochfrequenzstörungen übersteigt, sollte beobachtet werden, ob das FUJIFILM SonoSite-Ultraschallsystem ordnungsgemäß funktioniert. Werden Betriebsstörungen festgestellt, sind weitere Maßnahmen erforderlich. Eventuell muss das FUJIFILM SonoSite-Ultraschallsystem neu ausgerichtet oder an einem anderen Ort aufgestellt werden.

b. Im Frequenzbereich von 150 kHz bis 80 MHz darf die Feldstärke maximal 3 V/m betragen.

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrostatische Entladung gemäß IEC 61000-4-2</td>
<td>± 8,0 kV, Kontakt ± 2,0 kV, ± 4,0 kV, ± 8,0 kV Luft, ± 15 kV</td>
<td>± 8,0 kV, ± 4,0 kV, ± 8,0 kV Luft, ± 15 kV</td>
<td>Das Fußbodenmaterial sollte aus Holz, Beton oder Keramikfliesen bestehen. Bei einem synthetischen Fußbodenbelag sollte die relative Luftfeuchtigkeit mindestens 30 % betragen.</td>
</tr>
<tr>
<td>Schnelle transiente elektrische Störgrößen (Burst) gemäß IEC 61000-4-4</td>
<td>± 2 kV am Netz ± 1 kV auf Signalleitungen</td>
<td>± 2 kV am Netz ± 1 kV auf Signalleitungen</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen.</td>
</tr>
<tr>
<td>Stoßspannung gemäß IEC 61000-4-5</td>
<td>± 1 kV Leitung(en) zu Leitung(en) ± 2 kV Leitung(en) zu Erde</td>
<td>± 1 kV Leitung(en) zu Leitung(en) ± 2 kV Leitung(en) zu Erde</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen.</td>
</tr>
<tr>
<td>Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungs- schwankungen auf Netzteile-Eingangsleitungen gemäß IEC 61000-4-11</td>
<td>0 % U<sub>T</sub> für 0,5 Zyklen 0 % U<sub>T</sub> für 5 Zyklen 70 % U<sub>T</sub> (30 % Abfall in U<sub>T</sub>) für 500 ms <5 % U<sub>T</sub> (>95 % Abfall in U<sub>T</sub>) für 5 s</td>
<td>0 % U<sub>T</sub> für 0,5 Zyklen 0 % U<sub>T</sub> für 5 Zyklen 70 % U<sub>T</sub> (30 % Abfall in U<sub>T</sub>) für 500 ms <5 % U<sub>T</sub> (>95 % Abfall in U<sub>T</sub>) für 5 s</td>
<td>Die Netzspannungsqualität sollte einer typischen Unternehmens- oder Krankenhausumgebung entsprechen. Wenn die Untersuchung mit dem FUJIFILM SonoSite-Ultraschallsystem auch bei Unterbrechung der Netzspannung fortgesetzt werden muss, sollte das FUJIFILM SonoSite-Ultraschallsystem über eine unterbrechungsfreie Stromversorgung oder einen Akku betrieben werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetfeldstärke mit energietechnischer Frequenz IEC 61000-4-8</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>Bei verzerrter Bilddarstellung ist es möglicherweise erforderlich, den Abstand zwischen dem FUJIFILM SonoSite-Ultraschallsystem und Magnetfeldern mit energietechnischer Frequenz zu vergrößern oder eine Abschirmvorrichtung für Magnetfelder anzubringen. Die Magnetfeldstärke mit energietechnischer Frequenz sollte am vorgesehenen Installationsort gemessen werden, um sicherzustellen, dass die Grenzwerte eingehalten werden.</td>
</tr>
</tbody>
</table>
| Geleitete Hochfrequenz gemäß IEC 61000-4-6 | 3 Vrms 150 kHz bis 80 MHz
6 Vrms in ISM-Frequenzbändern | 3 Vrms
6 Vrms in ISM-Frequenzbändern | Beim Einsatz tragbarer oder mobiler Hochfrequenzgeräte zur Datenübertragung sollte der empfohlene Abstand zu allen Teilen des FUJIFILM SonoSite-Ultraschallsystems (einschließlich Kabel) eingehalten werden, der sich aus der Gleichung für die Frequenz des Senders berechnet. Empfohener Abstand \(d = 1,2 \sqrt{P} \). |

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
</table>
| Hochfrequente Strahlung IEC 61000-4-3 | 3 V/m 80 MHz bis 2,7 GHz | 3 V/m 80 MHz bis 2,7 GHz | $d = 1,2 \sqrt{P}$ 80 MHz bis 800 MHz
$d = 2,3 \sqrt{P}$ 800 MHz bis 2,5 GHz
P ist die maximale Ausgangsnennleistung des Senders in Watt (10) gemäß den Angaben des Herstellers, und d ist der empfohlene Abstand in Metern (m).
Die Feldstärken stationärer Hochfrequenzsender, die bei der elektromagnetischen Untersuchung des Standorts ermittelt wurden, sollten für jeden Frequenzbereich unter dem Grenzwert liegen.
In der Nähe von Geräten, die mit diesem Symbol gekennzeichnet sind, können Störungen auftreten:

(IEC 60417 Nr. 417-IEC-5140: „Quelle nicht ionisierender Strahlung“) |

Hinweis

U_T ist die Netzspannung vor Anwendung des Prüfpegels.
Bei 80 MHz und 800 MHz gilt der höhere Frequenzbereich.
Diese Richtlinien gelten eventuell nicht in allen Situationen. Die Ausbreitung elektromagnetischer Strahlung wird durch Absorption sowie die Reflektion von Strukturen, Gegenständen und Personen beeinflusst.
Warnhinweis der FCC:

Kompatible Zubehörteile und Peripheriegeräte

Folgender Warnhinweis wurde in den Benutzerhandbüchern zu den Systemen SonoSite Edge II und SonoSite SII hinzugefügt; die Revision wird mit der nächsten Aktualisierung vorgenommen.

WARNHINWEIS

Beim Anschließen von Peripheriegeräten an das System muss sichergestellt werden, dass das System und die Peripheriegeräte an denselben Zweigstromkreis der Wechselstromquelle angeschlossen sind.

<table>
<thead>
<tr>
<th>Störfestigkeitsprüfung</th>
<th>Prüfpegel gemäß IEC 60601</th>
<th>Grenzwert</th>
<th>Elektromagnetische Umgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Die Feldstärken stationärer Sender wie Basisstationen für Funktelefone (Handys/Schnurlostelefone) sowie Sendern für Landfunk, Amateurfunk, UKW/MW-Radio- und Fernsehübertragung können theoretisch nicht genau vorhergesagt werden. Um die durch stationäre Hochfrequenzsender bedingte elektromagnetische Umgebung zu beurteilen, sollte eine elektromagnetische Untersuchung des Aufstellungsords in Betracht gezogen werden. Wenn die gemessene Feldstärke am Einsatzort des FUJIFILM SonoSite-Ultraschallsystems die entsprechenden Grenzwerte für Hochfrequenzstörungen übersteigt, sollte beobachtet werden, ob das FUJIFILM SonoSite-Ultraschallsystem ordnungsgemäß funktioniert. Werden Betriebsstörungen festgestellt, sind weitere Maßnahmen erforderlich. Eventuell muss das FUJIFILM SonoSite-Ultraschallsystem neu ausgerichtet oder an einem anderen Ort aufgestellt werden.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Im Frequenzbereich von 150 kHz bis 80 MHz darf die Feldstärke maximal 3 V/m betragen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>![symbol]</td>
<td>Nicht ionisierende elektromagnetische Strahlung</td>
<td>IEC 60601-1-2:2007 Medizinische elektrische Geräte – Teil 1-2: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale – Ergänzungsnorm: Elektromagnetische Verträglichkeit</td>
<td>5.1.1</td>
<td>Anzeige von allgemein erhöhten, potenziell gefährlichen Mengen an nicht ionisierender Strahlung oder zur Anzeige von Geräten oder Systemen, d. h. im elektrischen medizinischen Bereich, die HF-Sender umfassen oder die absichtlich elektromagnetische HF-Energie für die Diagnose oder Behandlung verwenden</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>![⚠️]</td>
<td>Vorsichtshinweis</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.4.4</td>
<td>Angabe, dass der Benutzer die Gebrauchsanweisung für wichtige Warnhinweise wie Warnungen und Vorsichtsmaßnahmen, die aus verschiedenen Gründen nicht auf dem Medizinprodukt selbst dargestellt werden können, konsultieren muss</td>
</tr>
<tr>
<td>![Glass]</td>
<td>Vorsicht, zerbrechlich!</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.3.1</td>
<td>Angabe, dass ein Medizinprodukt kaputt gehen oder beschädigt werden kann, wenn es nicht mit Vorsicht gehandhabt wird</td>
</tr>
<tr>
<td>![Umbrella]</td>
<td>Vor Feuchtigkeit schützen</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.3.4</td>
<td>Angabe, dass ein Medizinprodukt vor Feuchtigkeit geschützt werden muss</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperaturgrenzwert</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.3.7</td>
<td>Angabe der sicheren Temperaturgrenzwerte, denen ein Medizinprodukt ausgesetzt werden darf</td>
</tr>
<tr>
<td></td>
<td>Luftdruckgrenzwerte</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.3.9</td>
<td>Angabe des sicheren Luftdruckbereichs, dem ein Medizinprodukt ausgesetzt werden darf</td>
</tr>
<tr>
<td></td>
<td>Einschränkung durch Luftfeuchtigkeit</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.3.8</td>
<td>Angabe der sicheren Luftfeuchtigkeitswerte, denen ein Medizinprodukt ausgesetzt werden darf</td>
</tr>
<tr>
<td></td>
<td>Schutzgrad des Gehäuses gegen Eindringen von Staub und Feuchtigkeit</td>
<td>IEC 60601-1, Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>D.3</td>
<td>Gegen die Auswirkungen eines vorübergehenden Eintauchens geschützt.</td>
</tr>
<tr>
<td></td>
<td>Siehe Bedienungsanleitung/ Broschüre</td>
<td>IEC 60601-1 Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>D.2-10</td>
<td>Gebrauchsanweisungen befolgen (Verwendung gemäß IEC 60601-1)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Titel</td>
<td>Normungsorganisation</td>
<td>Referenznummer</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Gebrauchsanweisungen beachten</td>
<td>ISO 15223-1:2016 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.4.3</td>
<td>Gibt an, dass der Benutzer die Gebrauchsanweisung konsultieren muss.</td>
</tr>
<tr>
<td></td>
<td>Wechselstrom</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>5032</td>
<td>Angabe auf dem Typenschild, dass das Gerät zur Identifizierung geeigneter Anschlussstellen nur mit Wechselstrom betrieben werden darf</td>
</tr>
<tr>
<td></td>
<td>CE-Kennzeichnung</td>
<td>EU-Richtlinie 93/42/EWG</td>
<td>Artikel 17 Anhang XII</td>
<td>Bedeutet europäische technische Konformität</td>
</tr>
<tr>
<td></td>
<td>Conformité Européenne Referenznr. der benannten Stelle: 2797</td>
<td>EU-Richtlinie 93/42/EWG</td>
<td>Artikel 17 Anhang XII</td>
<td>Angabe der europäischen technischen Konformität und Kennzeichnung der benannten Stelle, die für die Durchführung der in den Anhängen II, IV, V und VI aufgeführten Verfahren zuständig ist</td>
</tr>
<tr>
<td></td>
<td>Gefährliche Spannung</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>5036</td>
<td>Anzeige von Gefahrenquellen infolge gefährlicher Spannung</td>
</tr>
<tr>
<td></td>
<td>Stapelgrenze nach Anzahl</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>2403</td>
<td>Angabe, dass die Elemente nicht höher aufeinandergestapelt werden dürfen als angegeben</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorsicht, heiß!</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>5041</td>
<td>Angabe, dass sich das gekennzeichnete Element erhitzen kann und nur mit besonderer Vorsicht angefasst werden sollte</td>
</tr>
<tr>
<td></td>
<td>Vorsicht, Gefahr durch statisches Magnetfeld!</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>6204</td>
<td>Kennzeichnung von Bereichen mit potenziell gefährlichen statischen Magnetfeldern und Kräften in einer Anlage</td>
</tr>
<tr>
<td></td>
<td>Angewandte Teile des Typs BF</td>
<td>IEC 60601-1, Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>D.2-10</td>
<td>Angabe eines angewandten Teils vom Typ BF in Übereinstimmung mit IEC 60601-1</td>
</tr>
<tr>
<td></td>
<td>Defibrillations-sicheres angewandtes Teil vom Typ CF</td>
<td>IEC 60601-1, Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>D.1-27</td>
<td>Angabe eines defibrillationssicheren angewandten Teils vom Typ CF in Übereinstimmung mit IEC 60601-1</td>
</tr>
<tr>
<td></td>
<td>Gegen Elektrostatik empfindliche Geräte</td>
<td>IEC 60417:2002, Grafische Symbole zur Verwendung an Geräten</td>
<td>5134</td>
<td>Angabe, dass in der Verpackung elektrostatisch empfindliche Geräte enthalten sind oder Angabe, dass ein Gerät oder ein Stecker nicht auf Störfestigkeit gegenüber elektrostatischer Entladung getestet wurde</td>
</tr>
</tbody>
</table>

Kennzeichnungssymbole
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCM-Kennzeichnung (Regulatory Compliance Mark, Konformitäts-Prüfzeichen)</td>
<td>AS/NZS3820</td>
<td>–</td>
<td>Gibt die C-Tick-Kennzeichnung – das Konformitäts-Prüfzeichen für Australien und Neuseeland – an Gerät entspricht den relevanten Vorschriften für Elektrogeräte in Australien und Neuseeland.</td>
</tr>
<tr>
<td></td>
<td>Art der Kontrollnummer, z. B. Chargen-Nr., Datumscode oder Los-Nr.</td>
<td>ISO 15223-1 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.1.5</td>
<td>Gibt die Chargennummer des Herstellers an, damit die Charge oder das Los identifiziert werden kann</td>
</tr>
<tr>
<td></td>
<td>Biologisches Risiko</td>
<td>ISO 7010 – Grafiksymbole - Sicherheitsfarben und Sicherheitszeichen</td>
<td>W009</td>
<td>Zur Warnung vor Biogefährdung</td>
</tr>
<tr>
<td></td>
<td>INMETRO-Sicherheits symbole</td>
<td>–</td>
<td>–</td>
<td>Angabe der Akkreditierung in Brasilien durch die Zertifizierungsstelle des National Institute of Metrology Standardization and Industrial Quality (INMETRO)</td>
</tr>
<tr>
<td></td>
<td>CSA (Kanadische Normierungsorganisation) -Zertifizierung</td>
<td>–</td>
<td>–</td>
<td>CSA-Prüfzeichen, das bedeutet, dass das Produkt die anwendbaren CSA- und ANSI/UL-Anforderungen erfüllt und für den Gebrauch in Kanada und den Vereinigten Staaten zugelassen ist.</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellpappe dem Recycling zuführen</td>
<td>ISO 7000 – Grafische Symbole zur Verwendung an Geräten</td>
<td>–</td>
<td>Der Versandkarton besteht aus Wellpappe und sollte entsprechend recycelt werden</td>
</tr>
<tr>
<td></td>
<td>Herstellungsdatum</td>
<td>ISO 7000 – Grafische Symbole zur Verwendung an Geräten</td>
<td>5.1.3</td>
<td>Zur Angabe des Datums, an dem ein Produkt hergestellt wurde</td>
</tr>
<tr>
<td></td>
<td>Gleichstrom (DC)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Gel</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Resy – Recycling-Symbol</td>
<td>–</td>
<td>–</td>
<td>Papier dem Recycling zuführen</td>
</tr>
<tr>
<td>Symbol</td>
<td>Titel</td>
<td>Normungsorganisation</td>
<td>Referenznummer</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>IPX8</td>
<td>Schutzgrad des Gehäuses gegen Eindringen von Staub und Feuchtigkeit</td>
<td>IEC 60601-1, Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>D.3</td>
<td>Gegen die Auswirkungen eines vorübergehenden Eintauchens in Wasser geschützt. Wasserdichtes Gerät – Gegen die Auswirkungen eines längeren Eintauchens geschützt</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Gibt an, dass es vorsichtig behandelt werden muss</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Gibt an, dass Herstelleranweisungen zur Desinfektionsdauer befolgt werden müssen</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Angabe, wie der Schallkopf desinfiziert werden muss</td>
</tr>
<tr>
<td>–</td>
<td>Maximale Gewichtsbelastung</td>
<td>IEC 60601-1 Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
<td>7.2.21</td>
<td>Angaben über Gesamtgewicht des Geräts, einschließlich der sicheren Arbeitslast</td>
</tr>
<tr>
<td>–</td>
<td>Prüfzeichen der Underwriters Laboratories (UL)</td>
<td>–</td>
<td>–</td>
<td>Prüfzeichen nur für Stromschlag, Feuer und mechanische Gefahren</td>
</tr>
<tr>
<td>–</td>
<td>UL-Produktzertifizierung</td>
<td>–</td>
<td>–</td>
<td>Das Produkt oder Unternehmen erfüllt die strengen Normen der Produktsicherheit.</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>![ccc]</td>
<td>China Obligatorisch Prüfzeichen („CCC-Kennzeichnung“). Obligatorische Sicherheitskennzeichnung für die Einhaltung der chinesischen nationalen Standards für viele in der Volksrepublik China verkaufte Produkte.</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>![sterile eo]</td>
<td>Mithilfe von Äthylenoxid sterilisiert</td>
<td>ISO 15223-1 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendende Symbole, Kennzeichnung und zu liefernde Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.2.3</td>
<td>Gibt an, dass ein Medizinprodukt mithilfe von Äthylenoxid sterilisiert wurde</td>
</tr>
</tbody>
</table>
Tabelle 7: Normen und Kennzeichnungssymbole (Fortsetzung)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Titel</th>
<th>Normungsorganisation</th>
<th>Referenznummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STERILE R</td>
<td>Mithilfe von Bestrahlung sterilisiert</td>
<td>ISO 15223-1 Medizinprodukte – Bei Aufschriften von Medizinprodukten zu verwendenden Symbole, Kennzeichnung und zu liefernden Informationen – Teil 1: Allgemeine Anforderungen</td>
<td>5.2.4</td>
<td>Gibt an, dass ein Medizinprodukt strahlungssterilisiert wurde</td>
</tr>
<tr>
<td></td>
<td>(Nur SII) Gefährliche Spannung</td>
<td>ISO 7000 / IEC 60417, Grafische Symbole zur Verwendung an Geräten</td>
<td>5036</td>
<td>Anzeige von Gefahrenquellen infolge gefährlicher Spannung</td>
</tr>
</tbody>
</table>

Technische Daten

Unterstützte Schallköpfe (SonoSite SII)

Folgender redundantes Abschnitt wurde aus dem Benutzerhandbuch zu SonoSite SII entfernt. Dieselben Informationen waren in Tabelle 9-2 des Benutzerhandbuchs vorhanden; die Revision wird mit der nächsten Aktualisierung vorgenommen.
Tabelle 8: Unterstützte Schallköpfe

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Maximale Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schallkopf C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf rC60xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HFL38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf HSL25x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Schallkopf ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Schallkopf L38xi Standard/armiert</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Schallkopf L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Schallkopf P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Schallkopf rP19x Standard/armiert</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>

Normen

Elektromechanische Sicherheitsstandards

Tabelle 9: Elektromechanische Sicherheitsstandards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA C22.2 Nr. 60601-1:2014 (Aufl. 3.1)</td>
<td>Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
</tr>
<tr>
<td>IEC 60601-1:2012 (Aufl. 3.1)</td>
<td>Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
</tr>
</tbody>
</table>
Tabelle 9: Elektromechanische Sicherheitsstandards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS T0601-1:2012 (3. Aufl.)</td>
<td>Japanische Industrienorm, Medizinische elektrische Geräte – Teil 1: Allgemeine Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale</td>
</tr>
</tbody>
</table>

Schallausgangsleistung

ALARA-Prinzip

Anwendung des ALARA-Prinzips

Für die bedachte Verwendung des Ultraschalls ist es erforderlich, die Ultraschall-Exposition des Patienten zum Erzielen akzeptabler diagnostischer Ergebnisse auf die geringstmögliche Ultraschall-Ausgangsleistung und auf einen so kurz wie möglichen Zeitraum zu begrenzen. Entscheidungen, die eine wohl bedachte Verwendung fördern, basieren auf dem Patiententyp, dem Untersuchungstyp, der Patientenanamnese, der Einfachheit oder Schwierigkeit, mit der diagnostisch nützliche Informationen gewonnen werden, und auf Überlegungen bezüglich einer potenziellen stellenweisen Erwärmung des Patienten aufgrund der Schallkopfoberflächentemperatur.

Direkte Steuerelemente

Das System überschreitet bei keinem der Bildgebungsmodi einen ISPTA-Wert von 720 mW/cm². (Bei ophthalmischer oder Orbital-Untersuchung ist die Schallausgangsleistung auf folgende Werte beschränkt: Maximaler ISPTA-Wert 50 mW/cm², maximaler TI-Wert 1,0 und maximaler MI-Wert 0,23. Bei bestimmten Schallköpfen treten bei einigen Bildgebungsmodi mechanische Indexwerte (MI) und thermische Indexwerte (TI) über 1,0 auf. Es empfiehlt sich, die MI- und TI-Werte zu überwachen und die Steuerelemente zur Reduzierung dieser Werte ggf. zu regulieren. Siehe „Richtlinien zur Reduzierung von MI und TI“ auf Seite 10-3. Dem ALARA-Prinzip wird zudem entsprochen, indem die MI- oder TI-Werte auf einen niedrigen Indexwert eingestellt und dann reguliert werden, bis das Bild oder der Doppler-Modus zufriedenstellend ist. Weitere Informationen zu MI und TI entnehmen Sie Medical Ultrasound Safety, AIUM (eine Kopie liegt jedem System bei) und dem Anhang der IEC 60601-2-37 „Leitfaden zur Auswertung von TI und MI zur Information des Bedieners“.

Ausgangsleistungsanzeige

Sachverwandte Leitfäden

IEC 60601-2-37: 2015, Besondere Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale von Ultraschallgeräten für die medizinische Diagnose und Überwachung.
Anstieg der Schallkopfoberflächen temperatur

Tabelle 10-4 und Tabelle 10-5 zeigen den gemessenen Anstieg der Oberflächentemperatur in Bezug auf die Umgebungstemperatur (23 °C ± 3 °C) der mit dem Ultraschallsystem verwendeten Schallköpfe. Die Temperaturen wurden gemäß IEC 60601-2-37 gemessen, wobei Bedienelemente und Einstellungen so reguliert wurden, dass maximale Temperaturen erzielt wurden.

Messung der Schallausgangsleistung

Schallausgangsleistungstabellen

Das Format der Schallausgangsleistungs-Tabellen wurde aktualisiert.

Schallkopfmodell: Betriebsmodus C8x: 2D .. 128
Schallkopfmodell: Betriebsmodus C8x: M-Mode .. 129
Schallkopfmodell: Betriebsmodus C8x: Color/CPD .. 130
Schallkopfmodell: Betriebsmodus C8x: PW-Doppler ... 131
Schallkopfmodell: Betriebsmodus C11x: PW-Doppler ... 132
Schallkopfmodell: Betriebsmodus C35x: 2D ... 133
Schallkopfmodell: Betriebsmodus C35x: PW-Doppler ... 134
Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): 2D 135
Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): M-Mode 136
Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): Color/CPD 137
Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): PW-Doppler 138
Schallkopfmodell: Betriebsmodus HFL38xi: 2D .. 139
Schallkopfmodell: Betriebsmodus HFL38xi: M-Mode .. 140
Schallkopfmodell: Betriebsmodus HFL38xi: Color/CPD .. 141
Schallkopfmodell: Betriebsmodus HFL38xi: PW-Doppler ... 142
Schallkopfmodell: Betriebsmodus HFL50x: 2D ... 143
Schallkopfmodell: Betriebsmodus HFL50x: M-Mode	... 144
Schallkopfmodell: Betriebsmodus HFL50x: Color	.. 145
Schallkopfmodell: Betriebsmodus HFL50x: PW-Doppler	.. 146
Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): 2D	.. 147
Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): M-Mode	.. 148
Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): Color/CPD 149
Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): PW-Doppler 150
Schallkopfmodell: Betriebsmodus HSL25x: 2D	... 151
Schallkopfmodell: Betriebsmodus HSL25x: Color/CPD	... 152
Schallkopfmodell: Betriebsmodus HSL25x: PW-Doppler	.. 153
Schallkopfmodell: Betriebsmodus ICTx: PW-Doppler	... 154
Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): 2D 155
Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): M-Mode 156
Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): Color/CPD 157
Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): PW-Doppler 158
Schallkopfmodell: Betriebsmodus L25x: 2D	.. 159
Schallkopfmodell: Betriebsmodus L25x: Color/CPD	... 160
Schallkopfmodell: Betriebsmodus L25x: PW-Doppler	.. 161
Schallkopfmodell: Betriebsmodus L38xi: 2D	.. 162
Schallkopfmodell: Betriebsmodus L38xi: M-Mode	.. 163
Schallkopfmodell: Betriebsmodus L38xi: Color/CPD	.. 164
Schallkopfmodell: Betriebsmodus L38xi: PW-Doppler	.. 165
Schallkopfmodell: Betriebsmodus P10x: Color	.. 166
Schallkopfmodell: Betriebsmodus P10x: CW-Doppler	.. 167
Schallkopfmodell: Betriebsmodus P10x: PW-Doppler	.. 168
Schallkopfmodell: Betriebsmodus rC60xi: 2D	.. 169
Schallkopfmodell: Betriebsmodus rC60xi: M-Mode	.. 170
Schallkopfmodell: Betriebsmodus rC60xi: Color/CPD	.. 171
Schallkopfmodell: Betriebsmodus rC60xi: PW-Doppler	.. 172
Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): 2D 173
Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): M-Mode 174
Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): Color/CPD 175
Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): PW-Doppler 176
Schallkopfmodell: Betriebsmodus rP19x: 2D	.. 177
Schallkopfmodell: Betriebsmodus rP19x: M-Mode	.. 178
Schallkopfmodell: Betriebsmodus rP19x: Color/CPD	.. 179
Schallkopfmodell: Betriebsmodus rP19x: CW-Doppler	.. 180
Schallkopfmodell: Betriebsmodus rP19x: PW-Doppler	.. 181
Schallkopfmodell: Betriebsmodus TEExi: CW-Doppler	.. 182
Schallkopfmodell: Betriebsmodus TEExi: PW-Doppler	.. 183
Tabelle 10: Schallkopfmodell: Betriebsmodus C8x: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r, \alpha}$ bei z_{MI} (MPa)</td>
<td>2,48</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>–</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>–</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>1,2</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>9524</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>18,6</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ bei $z_{pii, \alpha}$ (W/cm²)</td>
<td>264</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta, \alpha}$ bei $z_{pii, \alpha}$ oder $z_{sii, \alpha}$ (mW/cm²)</td>
<td>18,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>25,6</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Pro</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>2,5–3,2</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>MB</td>
<td>Aus</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 11: Schallkopfmodell: Betriebsmodus C8x: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{r} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder z_{pii} (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.) – Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 12: Schallkopfmodell: Betriebsmodus C8x: Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{5} (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Pen/1,5–1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Hoch/beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Schmal/beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 13: Schallkopfmodell: Betriebsmodus C8x: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,4</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>23,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>23,1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>4,80</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerlemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Pro</td>
<td>Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 4</td>
<td>Zone 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>1008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 14: Schallkopfmodell: Betriebsmodus C11x: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td>0,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Schallparameter

- $p_{r,\alpha}$ bei z_{MI} (MPa)
- P (mW)
- $P_{1\times1}$ (mW)
- z_s (cm)
- z_b (cm)
- z_{MI} (cm)
- $z_{piii,\alpha}$ (cm)
- f_{awf} (MHz)

Schallparameter

- $p_{r,\alpha}$ bei z_{MI} (MPa)
- P (mW)
- $P_{1\times1}$ (mW)
- z_s (cm)
- z_b (cm)
- z_{MI} (cm)
- $z_{piii,\alpha}$ (cm)
- f_{awf} (MHz)

Zusätzliche Informationen

- $l_{pa,\alpha}$ bei $z_{piii,\alpha}$ (W/cm²)
- $l_{spta,\alpha}$ bei $z_{piii,\alpha}$ oder $z_{siii,\alpha}$ (mW/cm²)
- l_{spta} bei z_{piii} oder z_{siii} (mW/cm²)
- p_f bei z_{piii} (MPa)

Betriebssteuelemente

- Untersuchungstyp: Nrv
- Größe des Probenvolumens (mm): 1, 7
- Position des Probenvolumens: Zone 1, Zone 0
- PRF (Hz): 10,417, 6,250

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 15: Schallkopfmodell: Betriebsmodus C35x: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>16,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>2,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Msk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>8,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>n. z.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.

Schallausgangsleistungstabellen
Tabelle 16: Schallkopfmodell: Betriebsmodus C35x: PW–Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Schallparameter</td>
<td>pr,α bei z_MI (MPa)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P (mW)</td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>P_{1x1} (mW)</td>
<td>71,1</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>z_s (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>z_MI (cm)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_{pii,α} (cm)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>l_{pa,α} bei z_{pii,α} (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>l_{spta,α} bei z_{pii,α} oder z_{sii,α} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_r bei z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebs-</td>
<td>Untersuchungstyp</td>
<td>Wirbelsäule</td>
<td>Wirbelsäule</td>
<td></td>
</tr>
<tr>
<td>steuerelemente</td>
<td>Größe des Probenvolumens (mm)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Position des Probenvolumens</td>
<td>Zone 5</td>
<td>Zone 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRF (Hz)</td>
<td>6.250</td>
<td>15.625</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 17: Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,77</td>
<td>0,77</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,21</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,59</td>
<td>6,75</td>
<td>6,75</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>11,339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>19,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>11,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,9</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Ein</td>
<td>Ein</td>
<td>Ein</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,003</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>p_r,α bei z_{MI} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_{r} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td></td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>1,11</td>
<td>1,11</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>0,75</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>4,537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bei (z_{pii,\alpha}) (W/cm²)</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bei (z_{pii,\alpha}) oder (z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) bei (z_{pii}) oder (z_{sii}) (mW/cm²)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) bei (z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Pen/1,5</td>
<td>Pen/4,9</td>
<td>Pen/4,9</td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Hoch/7813</td>
<td>Hoch/6944</td>
<td>Hoch/6944</td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Unten/klein</td>
<td>Strd/schmal</td>
<td>Strd/schmal</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 20: Schallkopfmodell: Betriebsmodus HFL38xi (Augenuntersuchungen): PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>0,18</td>
<td>0,09</td>
<td>0,17 (b)</td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,09</td>
<td>0,06</td>
<td>0,09</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r,\alpha} bei z_{MI} (MPa)</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,64</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{\alpha,\alpha} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,33</td>
<td>5,33</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r,\alpha} bei z_{\alpha,\alpha} (W/cm²)</td>
<td>6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta,\alpha} bei z_{\alpha,\alpha} oder z_{\alpha,\alpha} (mW/cm²)</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{sii,\alpha} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{\alpha} oder z_{\alpha} (mW/cm²)</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{\alpha} (MPa)</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.302</td>
<td>10.417</td>
<td>10.417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 21: Schallkopfmodell: Betriebsmodus HFL38xi: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>11,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>19,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Ven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>n. z.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadelsicht</td>
<td>Ein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert").
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 22: Schallkopfmodell: Betriebsmodus HFL38xi: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_S (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_B (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 23: Schallkopfmodell: Betriebsmodus HFL38xi: Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>3,05</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_6 (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2223</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>27,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>40,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,81</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>SmP</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Res/3,3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/401</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkranialen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 24: Schallkopfmodell: Betriebsmodus HFL38xi: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,1</td>
<td>0,8</td>
<td>1,1</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{\pi\alphai,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_{rr} (Hz)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{\pi\alphai,\alpha}$ (W/cm²)</td>
<td></td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{\pi\alphai,\alpha}$ oder $z_{si\alphai,\alpha}$ (mW/cm²)</td>
<td></td>
<td>102,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{si\alphai,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei $z_{\pi\alphai}$ oder $z_{si\alphai}$ (mW/cm²)</td>
<td></td>
<td>210,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei $z_{\pi\alphai}$ (MPa)</td>
<td></td>
<td>3,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td></td>
<td>Nrv</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td></td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td>1008</td>
<td>3125</td>
<td>3125</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ bei $z_{pii,\alpha}$ (W/cm2)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm2)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm2)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Ein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 26: Schallkopfmodell: Betriebsmodus HFL50x: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>TIB An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>TIC An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr bei z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 27: Schallkopfmodell: Betriebsmodus HFL50x: Color

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>(MI)</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>8233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{ops})</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) bei (z_{pii,\alpha}) (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) bei (z_{pii,\alpha}) oder (z_{sii,\alpha}) (mW/cm²)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) bei (z_{pii}) oder (z_{sii}) (mW/cm²)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_b) bei (z_{pii}) (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung/Tiefe (cm)</td>
<td>Niedrig/3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkranialen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 28: Schallkopfmodell: Betriebsmodus HFL50x: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>1,1</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,1</td>
<td>0,7</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r\alpha}$ bei z_{MI} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>42,6</td>
<td>42,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>42,6</td>
<td>42,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,34</td>
<td>5,34</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>599,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Beliebig</td>
<td>Beliebig</td>
<td>Beliebig</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>1563–3125</td>
<td>1563–3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 29: Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>TIB An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>TIC An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppr (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ bei $z_{pii,a}$ (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp,a}$ bei $z_{pii,a}$ oder $z_{sii,a}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,a}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp,a}$ bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Betriebssteuerelemente

Untersuchungstyp	Oph	Oph	Oph
Optimierung	Res	Pen	Pen
Tiefe (cm)	1,9	4,3	4,3
MB	Ein	Ein	Ein

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert").
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r, \alpha}$ bei z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>z_{β} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{β} (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{MI} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{r} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ bei $z_{pii, \alpha}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa, \alpha}$ bei $z_{pii, \alpha}$ oder</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii, \alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 31: Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06 (b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>1,9</td>
<td>1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_0 (cm)</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ops}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{i} bei z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/401</td>
<td>Mittel/4167</td>
<td>Mittel/4167</td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td>Oben/kurz-breit</td>
<td>Oben/kurz-breit</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 32: Schallkopfmodell: Betriebsmodus HSL25x (Augenuntersuchungen): PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
<td>0,21</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 33: Schallkopfmodell: Betriebsmodus HSL25x: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_6 (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ops}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_r bei z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>1,9–2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Ein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 34: Schallkopfmodell: Betriebsmodus HSL25x: Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_{a}) (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{\piii,\alpha}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pr_{r}) (Hz)</td>
<td>3079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sr_{r}) (Hz)</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\rho_{pa,\alpha}}) bei (z_{\piii,\alpha}) (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\pipta,\alpha}) bei (z_{\piii,\alpha}) oder</td>
<td>47,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{\piii,\alpha}) (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\pipta}) bei (z_{\piii}) oder (z_{\piii}) (mW/cm²)</td>
<td>63,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_{p}) bei (z_{\piii}) (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Sup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Pen/3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>0,8</td>
<td>1,5</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>28,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>28,1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>6,00</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 36: Schallkopfmodell: Betriebsmodus ICTx: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>0,3</td>
<td>1,2</td>
<td>#</td>
</tr>
<tr>
<td>p_{r,\alpha} bei z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td>#</td>
<td>1,60</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{pii,\alpha} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,36</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{r} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{pa,\alpha} bei z_{pii,\alpha} (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta,\alpha} bei z_{pii,\alpha} oder</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{sii,\alpha} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td>12,580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td>12,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bei (z_{pii,\alpha}) (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spata,\alpha}) bei (z_{pii,\alpha}) oder (z_{sii,\alpha}) (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spata}) bei (z_{pii}) oder (z_{sii}) (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pr) bei (z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Ein</td>
<td>Ein</td>
<td>Ein</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 38: Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td>0,010</td>
<td>0,009</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (W/cm²)</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 39: Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>1,9</td>
<td>1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{S} (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{B} (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z_{p_{ii},\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fr_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>pr_{rr} (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_{rr} (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{p_{ii},\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{p_{ii},\alpha}$ oder $Z_{s_{ii},\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei $Z_{p_{ii}}$ oder $Z_{s_{ii}}$ (mW/cm²²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei $Z_{p_{ii}}$ (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 40: Schallkopfmodell: Betriebsmodus L25x (Augenuntersuchungen): PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spt,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert").
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 41: Schallkopfmodell: Betriebsmodus L25x: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sppta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{sppta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Beliebig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>1,9–2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Ein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 42: Schallkopfmodell: Betriebsmodus L25x: Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{M1} (MPa)</td>
<td>2,35</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{5} (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{M1} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>5261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{piii,\alpha}$ (W/cm2)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{piii,\alpha}$ oder $z_{siii,\alpha}$ (mW/cm2)</td>
<td>81,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{piii} oder z_{siii} (mW/cm2)</td>
<td>109,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Ven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Pen/3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/779</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 43: Schallkopfmodell: Betriebsmodus L25x: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Schallparameter

- $p_{pr,\alpha}$ bei z_{MI} (MPa)
- P (mW)
- P_{1x1} (mW)
- z_s (cm)
- z_b (cm)
- z_{MI} (cm)
- $z_{pii,\alpha}$ (cm)
- f_{awf} (MHz)

Zusätzliche Informationen

- prr (Hz)
- srr (Hz)
- n_{pps}
- $I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)
- $I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder
- $z_{si,\alpha}$ (mW/cm²)
- I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)
- p_r bei z_{pii} (MPa)

Betriebssteuerelemente

- Untersuchungstyp: Vas/Ven/Nrv
- Größe des Probenvolumens (mm): 8
- Position des Probenvolumens: Zone 7
- PRF (Hz): 1953

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
- Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 44: Schallkopfmodell: Betriebsmodus L38xi: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>3,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{3} (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1312</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>sr_{r} (Hz)</td>
<td>10,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta,\alpha}}$ bei $z_{pii,\alpha}$ oder $z_{spi,\alpha}$ (mW/cm²)</td>
<td>10,2</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta}}$ bei z_{pii} oder z_{spi} (mW/cm²)</td>
<td>13,5</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,79</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zusätzliche Informationen

- Untersuchungstyp: Nrv
- Optimierung: Res
- Tiefe (cm): 2,0
- MB: n. z.
- Nadelsicht: Ein

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 45: Schallkopfmodell: Betriebsmodus L38xi: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schallparameter</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>3,54</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zusätzliche Informationen</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ bei $z_{pii,a}$ (W/cm²)</td>
<td>776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp_{ta},a}$ bei $z_{pii,a}$ oder $z_{sii,a}$ (mW/cm²)</td>
<td>181,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,a}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp_{ta}}$ bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>280,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Betriebssteuerelemente</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchungstyp</td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Gen</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,7</td>
<td></td>
<td>7,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Tabelle 46: Schallkopfmodell: Betriebsmodus L38xi: Color/CPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index-Bezeichnung</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Schallparameter</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 47: Schallkopfmodell: Betriebsmodus L38xi: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th></th>
<th>TIB</th>
<th></th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>2,6</td>
<td>1,8</td>
<td>2,6</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>114,5</td>
<td>114,5</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>114,5</td>
<td>114,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,06</td>
<td>4,78</td>
<td>4,78</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>32,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399,8</td>
<td>495,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>2,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Art</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 0</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>10.417</td>
<td>10.417</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 48: Schallkopfmodell: Betriebsmodus P10x: Color

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1,1</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schallparameter

Untersuchungstyp: Crd
Modus: CVD
2D-Optimierung/Tiefe (cm)/Sektorbreite: Pen/8,9/schmal
Farboptimierung/PRF (Hz): Niedrig/2033
Position/Größe des Farbbereichs: Oben/kurz-breit

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 49: Schallkopfmodell: Betriebsmodus P10x: CW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS An der Oberfläche</th>
<th>MI Unter der Oberfläche</th>
<th>TIB An der Oberfläche</th>
<th>TIB Unter der Oberfläche</th>
<th>TIC An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a) 1,8</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,7</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>34,8</td>
<td>25,7</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td>34,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td></td>
<td>4,00</td>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ bei $z_{pii,a}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ bei $z_{pii,a}$ oder</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,a}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r, \alpha}$ bei z_{MI} (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>34,4</td>
<td>31,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,90</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
<td>3,86</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ bei $z_{pii, \alpha}$ (W/cm²)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, \alpha}$ bei $z_{pii, \alpha}$ oder $z_{sii, \alpha}$ (mW/cm²)</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>729,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>2,54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zusätzliche Informationen

Untersuchungstyp
- Crd
- Crd
- Abd
- Crd

Größe des Probenvolumens (mm)
- 1
- 7
- 12
- 1

Position des Probenvolumens
- Zone 2
- Zone 6
- Zone 1
- Zone 0

PRF (Hz)
- 1562
- 1008
- 1953
- 15.625

TDI
- Aus
- Ein
- Aus
- Aus

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert").

– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 51: Schallkopfmodell: Betriebsmodus rC60xi: 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>2,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>28,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ bei $z_{pii,\alpha}$ oder $z_{si,\alpha}$ (mW/cm²)</td>
<td>24,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{si} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>3,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (Mehrstrahl)</td>
<td>Aus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Ein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 52: Schallkopfmodell: Betriebsmodus rC60xi: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>(a)</td>
<td>1,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>0,36</td>
<td>1,00</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>69,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>25,9</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,66</td>
<td>#</td>
<td>2,89</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>144,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>328,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>3,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td>Msk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>6,6</td>
<td>9,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Aus</td>
<td>Aus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 53: Schallkopfmodell: Betriebsmodus rC60xi: Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185,8</td>
<td>185,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107,5</td>
<td>107,5</td>
<td></td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td></td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_6 (cm)</td>
<td></td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{\text{pii,}\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,22</td>
<td>2,21</td>
<td>2,21</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>9,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ops}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{\text{pii,}\alpha}$ (W/cm²)</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{\text{pii,}\alpha}$ oder</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>15,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{i} bei z_{pii} (MPa)</td>
<td>3,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)/THI</td>
<td>Gen/11/Ein</td>
<td>Gen/4,7/Aus</td>
<td>Gen/4,7/Aus</td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/342</td>
<td>Hoch/3125</td>
<td>Hoch/3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 54: Schallkopfmodell: Betriebsmodus rC60xi: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>1,73</td>
<td>1,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>67,5</td>
<td>74,2</td>
<td>#</td>
</tr>
<tr>
<td>z_{a} (cm)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p\alpha,\alpha}$ (cm)</td>
<td></td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
</tr>
<tr>
<td>p_{RR} (Hz)</td>
<td></td>
<td>1,302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{RR} (Hz)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p\alpha,\alpha}$ bei $z_{p\alpha,\alpha}$ (W/cm²)</td>
<td></td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{s\alpha,\alpha}$ bei $z_{p\alpha,\alpha}$ oder $z_{s\alpha,\alpha}$ (mW/cm²)</td>
<td></td>
<td>399,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{s\alpha,\alpha}$ bei $z_{p\alpha}$ oder $z_{s\alpha}$ (mW/cm²)</td>
<td></td>
<td>793,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{α} bei $z_{p\alpha}$ (MPa)</td>
<td></td>
<td>2,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 3</td>
<td>Zone 6</td>
<td>Zone 5</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1,302</td>
<td>2604</td>
<td>2604</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert.“)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 55: Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): 2D

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>2,9</td>
<td>2,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
<td>1,90</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>6413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>15,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>4,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuerelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)

Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 56: Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,009</td>
<td>0,020</td>
<td>0,021</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>0,006</td>
<td>0,009</td>
<td>0,006</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,34</td>
<td>1,34</td>
<td>1,34</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,67</td>
<td>0,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>3,15</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,06</td>
<td>1,83</td>
<td>1,83</td>
<td>1,83</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>4,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>2,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimierung</td>
<td>Res</td>
<td>Gen</td>
<td>Gen</td>
<td>Gen</td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>4,7</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 57: Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): Color/CPD

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>15,47</td>
<td>15,47</td>
<td>15,50</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>9,50</td>
<td>9,50</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>5443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(np_{pps})</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bei (z_{pii,\alpha}) (W/cm²)</td>
<td>1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bei (z_{pii,\alpha}) oder</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) bei (z_{pii}) oder (z_{sii}) (mW/cm²)</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) bei (z_{pii}) (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>2D-Optimierung/Tiefe (cm)</td>
<td>Gen/4,7</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/1157</td>
<td>Niedrig/3125</td>
<td>Niedrig/3125</td>
<td>Niedrig/3125</td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td>Oben/kurz-breit</td>
<td>Oben/kurz-breit</td>
<td>Oben/kurz-breit</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 58: Schallkopfmodell: Betriebsmodus rP19x (orbitale Untersuchung): PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>0,18</td>
<td>0,27</td>
<td>0,59</td>
<td>0,57</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td>0,19</td>
<td>0,27</td>
<td>0,18</td>
<td>0,59</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>37,4</td>
<td>35,3</td>
<td>37,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>17,5</td>
<td>17,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,23</td>
<td>2,23</td>
<td>2,23</td>
<td>2,23</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>2,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder</td>
<td>28,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>69,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0,36</td>
<td></td>
</tr>
<tr>
<td>Betriebssteuelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 6</td>
<td>Zone 7</td>
<td>Zone 5</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bei (z_{MI}) (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>152,6</td>
<td>152,6</td>
<td>177,8</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>96,1</td>
<td>96,1</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>1,99</td>
<td>2,08</td>
<td>2,08</td>
<td>1,53</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>6186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>48,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bei (z_{pii,\alpha}) (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bei (z_{pii,\alpha}) oder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{sii,\alpha}) (mW/cm²)</td>
<td>25,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) bei (z_{pii}) oder (z_{sii}) (mW/cm²)</td>
<td>38,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) bei (z_{pii}) (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssteuelemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Optimierung</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td>Pen</td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4,7</td>
</tr>
<tr>
<td>MB/THI</td>
<td>Aus/Aus</td>
<td>Ein/Aus</td>
<td>Ein/Aus</td>
<td>Ein/Aus</td>
</tr>
<tr>
<td>Sektorbreite</td>
<td>n. z.</td>
<td>Schmal</td>
<td>Schmal</td>
<td>n. z.</td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 60: Schallkopfmodell: Betriebsmodus rP19x: M-Mode

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>55,0</td>
<td>62,1</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>4,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>1,81</td>
<td>1,77</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>TCD</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Tiefe (cm)</td>
<td>7,5</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Aus</td>
<td>Ein</td>
<td>Ein</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.

(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert").

– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>128,0</td>
<td>128,0</td>
<td>170,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>115,6</td>
<td>115,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{5} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>2,14</td>
<td>2,14</td>
<td>2,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>505</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{sii,\alpha}$ (mW/cm²)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Abd</td>
<td>TCD</td>
<td>TCD</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus/THI</td>
<td>CVD/Aus</td>
<td>CVD/Aus</td>
<td>CVD/Aus</td>
<td>CVD/Ein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farboptimierung/PRF (Hz)</td>
<td>Niedrig/300</td>
<td>Niedrig/3125</td>
<td>Niedrig/3125</td>
<td>Hoch/5208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position/Größe des Farbbereichs</td>
<td>Strd/Strd</td>
<td>Strd/schmal</td>
<td>Strd/schmal</td>
<td>Strd/Strd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 62: Schallkopfmodell: Betriebsmodus rP19x: CW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>An der Oberfläche</td>
<td>Unter der Oberfläche</td>
<td>An der Oberfläche</td>
</tr>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,2</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bei z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>2,00</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bei $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pta,\alpha}$ bei $z_{pii,\alpha}$ oder $z_{pii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>I_{spa} bei z_{pi} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bei z_{pi} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
- Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 63: Schallkopfmodell: Betriebsmodus rP19x: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS An der Oberfläche</th>
<th>TIS Unter der Oberfläche</th>
<th>TIB An der Oberfläche</th>
<th>TIB Unter der Oberfläche</th>
<th>TIC An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>1,3</td>
<td>1,8</td>
<td>4,0</td>
<td>3,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>1,3</td>
<td>1,8</td>
<td>1,2</td>
<td>4,0</td>
<td>3,9</td>
</tr>
<tr>
<td>$p_{r,c}$ bei z_{MI} (MPa)</td>
<td>1,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>253,7</td>
<td></td>
<td>240,2</td>
<td></td>
<td>251,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>118,6</td>
<td></td>
<td>116,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,c}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,14</td>
<td>2,23</td>
<td>2,23</td>
<td>2,10</td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,c}$ bei $z_{pii,c}$ (W/cm²)</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,c}$ bei $z_{pii,c}$ oder $z_{sii,c}$ (mW/cm²)</td>
<td>374,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>594,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>2,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 5</td>
<td>Zone 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1562</td>
<td>1562</td>
<td>39,062</td>
<td>39,062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDI</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.
Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 64: Schallkopfmodell: Betriebsmodus TEExi: CW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS An der Oberfläche</th>
<th>Unter der Oberfläche</th>
<th>TIB An der Oberfläche</th>
<th>TIC An der Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a) 1,7</td>
<td></td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td># # 0,7 1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr, α bei z_Mil (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td># 34,4</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td># # 34,4</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td>1,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_Mil (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{pii, α} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td># # 4,00</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schallparameter

- Pr, α bei z_Mil (MPa)
- P (mW)
- P_{1x1} (mW)
- z_s (cm)
- z_b (cm)
- z_Mil (cm)
- z_{pii, α} (cm)
- f_{awf} (MHz)

Zusätzliche Informationen

- prr (Hz)
- srr (Hz)
- n_{pps}
- I_{pa, α} bei z_{pii, α} (W/cm²)
- I_{spa, α} bei z_{pii, α} oder z_{sii, α} (W/cm²)
- I_{spa} bei z_{pii} oder z_{sii} (mW/cm²)
- p_r bei z_{pii} (MPa)

Betriebssteuerelemente

- Untersuchungstyp: Crd
- Probenvolumen: Zone 2

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist < 1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
- Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
Tabelle 65: Schallkopfmodell: Betriebsmodus TEExi: PW-Doppler

<table>
<thead>
<tr>
<th>Index-Bezeichnung</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Indexwert</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Index-Komponentenwert</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,7</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ bei z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>35,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>35,8</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td>#</td>
</tr>
<tr>
<td>Schallparameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ bei $z_{pii,a}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ bei $z_{pii,a}$ oder</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{sii,a}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bei z_{pii} oder z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bei z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersuchungstyp</td>
<td>Crd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe des Probenvolumens (mm)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Probenvolumens</td>
<td>Zone 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>2604</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Dieser Index ist für diesen Betriebsmodus nicht erforderlich. Der Wert ist <1.
(b) Dieser Schallkopf ist nicht für den transkraniellen Einsatz und für Schädeluntersuchungen bei Neugeborenen vorgesehen.

Für diese Betriebsbedingung liegen keine Daten vor, da aus dem angegebenen Grund kein globaler maximaler Indexwert vorliegt. (Siehe Zeile „Globaler maximaler Indexwert“.)
– Für diesen Schallkopf/Betriebsmodus nicht zutreffend.
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Schwächungskoeffizient, der zur Reduzierung verwendet wird. Gleich 0,3 dB/cm/MHz².</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Akustische Arbeitsfrequenz.</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$</td>
<td>Abgeschwächte Durchschnittsimpulsstärke.</td>
</tr>
<tr>
<td>l_{spta}</td>
<td>Räumlich maximale zeitlich gemittelte Intensität.</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$</td>
<td>Abgeschwächte räumlich maximale zeitlich gemittelte Intensität.</td>
</tr>
<tr>
<td>MI</td>
<td>Mechanischer Index.</td>
</tr>
<tr>
<td>P</td>
<td>Ausgangsleistung.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Ausgangsleistung in einem beschränkten Quadrat.</td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>Abgeschwächter Schalldruck der Spitzenverdünnung.</td>
</tr>
<tr>
<td>p_r</td>
<td>Schalldruck der Spitzenverdünnung.</td>
</tr>
<tr>
<td>pii</td>
<td>Ganzzahl zur Impulsstärke.</td>
</tr>
<tr>
<td>pii,α</td>
<td>Ganzzahl zur abgeschwächten Impulsstärke.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Impulsanzahl pro Ultraschallscanzeile.</td>
</tr>
<tr>
<td>p_{rr}</td>
<td>Impulswiederholungsrate.</td>
</tr>
<tr>
<td>srr</td>
<td>Scanwiederholungsrate.</td>
</tr>
<tr>
<td>TI</td>
<td>Thermischer Index.</td>
</tr>
<tr>
<td>TIB</td>
<td>Thermischer Index für Knochen.</td>
</tr>
<tr>
<td>TIC</td>
<td>Thermischer Index für Schädelknochen.</td>
</tr>
<tr>
<td>TIS</td>
<td>Thermischer Index für Weichgewebe.</td>
</tr>
<tr>
<td>z_b</td>
<td>Tiefe für TIB.</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>Tiefe für mechanischen Index.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Tiefe für Spitzenwert der Ganzzahl zur Impulsstärke.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Tiefe für Spitzenwert der Ganzzahl zur abgeschwächten Impulsstärke.</td>
</tr>
</tbody>
</table>
Tabelle 66: In der Schallausgangsleistungstabelle verwendete Begriffe

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{sii}</td>
<td>Tiefe für Spitzenwertsumme der Ganzzahlen zur Impulsstärke.</td>
</tr>
<tr>
<td>$Z_{sii,\alpha}$</td>
<td>Tiefe für Spitzenwertsumme der Ganzzahlen zur abgeschwächten Impulsstärke.</td>
</tr>
<tr>
<td>Z_{S}</td>
<td>Tiefe für TIS.</td>
</tr>
</tbody>
</table>

Glossar (SonoSite Edge II)

Der Begriff „IMT“ wurde aus der Liste der Abkürzungen im Benutzerhandbuch zu SonoSite Edge II entfernt; die Revision wird mit der nächsten Aktualisierung vorgenommen.
Fe de erratas del manual para el usuario de SonoSite Edge II y SonoSite SII

Introducción ... 188
Convenciones utilizadas en el documento ... 188
Obtención de ayuda ... 188

Obtención de ayuda (SonoSite Edge II) .. 189

Primeros pasos ... 189
Usos previstos ... 189

Configuración del sistema ... 189
Ajustes de conectividad (SonoSite SII) ... 189
Configuración de conectividad (SonoSite Edge II) ... 189
Ajustes del estado de la red .. 190

Adquisición de imágenes ... 190
Modos de imagen y exámenes disponibles según el transductor (SonoSite SII) 190

Mediciones y cálculos (SonoSite SII) .. 190
Cálculos generales ... 190

Referencias de medición (SonoSite SII) ... 191
Exactitud de las mediciones .. 192
Publicaciones y terminología relacionadas con las mediciones .. 192

Limpieza y desinfección .. 193

Seguridad ... 193
Seguridad clínica .. 193
Compatibilidad electromagnética ... 194
Transmisión inalámbrica .. 196
Mochila USB inalámbrica (Panda) .. 196
Módulo inalámbrico y de seguridad (Laird) .. 197

Símbolos del etiquetado .. 208
Especificaciones ... 208
Transductores compatibles (SonoSite SII) ... 217
Normas ... 218

Normas relativas a la seguridad electromecánica .. 218

Emisión acústica ... 219
Criterio ALARA .. 219
Aplicación del criterio ALARA ... 219
Controles directos .. 220
Visualización de salida ... 220
Documentos de consulta relacionados ... 220
Medición de la emisión acústica .. 220
Términos utilizados en las tablas de emisión acústica .. 279

Glosario (SonoSite Edge II) .. 280
Introducción

Convenciones utilizadas en el documento

En este documento se utilizan las siguientes convenciones:

- Una **ADVERTENCIA** describe las precauciones necesarias para evitar lesiones o situaciones que entrañen peligro de muerte.
- Una **Precaución** describe las precauciones necesarias para proteger los productos.
- Una **Nota** proporciona información complementaria.
- Los pasos que se indican con números y letras deben ejecutarse en un orden determinado.
- Las listas con viñetas presentan información en forma de lista, sin que ello implique una secuencia.
- Las intervenciones de un solo paso empiezan por ◆.

Para obtener una descripción de los símbolos del etiquetado que aparecen en el producto, consulte “Símbolos del etiquetado” en el manual para el usuario.

Obtención de ayuda

Para obtener asistencia técnica, póngase en contacto con FUJIFILM SonoSite por los siguientes medios:

- **Teléfono**
 (EE. UU. o Canadá)
 +1-877-657-8118

- **Teléfono**
 (fuera de los EE. UU. o Canadá)
 +1-425-951-1330 o bien llame a su representante local

- **Fax**
 +1-425-951-6700

- **Correo electrónico**
 ffss-service@fujifilm.com

- **Web**
 www.sonosite.com

Centro de servicio al cliente en Europa:

- Principal: +31 20 751 2020
- Asistencia técnica en inglés: +44 14 6234 1151
- Asistencia técnica en francés: +33 1 8288 0702
- Asistencia técnica en alemán: +49 69 8088 4030
- Asistencia técnica en italiano: +39 02 9475 3655
- Asistencia técnica en español: +34 91 123 8451

Centro de servicio al cliente en Asia:

- +65 6380-5581

Impreso en los EE. UU.
Obtención de ayuda (SonoSite Edge II)

En el manual para el usuario del sistema SonoSite Edge II se ha corregido lo siguiente; la revisión se realizará en la próxima actualización.

Correo electrónico ffss-service@fujifilm.com

Primeros pasos

El contenido siguiente no se incluyó en los manuales para el usuario de los sistemas SonoSite Edge II y SonoSite SII o era incorrecto; las revisiones se realizarán en la próxima actualización.

Usos previstos

Aplicaciones de imágenes de la próstata

Puede evaluar la presencia o ausencia de patologías en la próstata y las estructuras anatómicas circundantes.

Aplicaciones de imágenes superficiales

Puede evaluar la presencia o ausencia de alteraciones patológicas en las mamas, glándula tiroidea, testículos, ganglios linfáticos, hernias, estructuras musculoesqueléticas, partes blandas, columna, estructuras oftálmicas y estructuras anatómicas circundantes. Puede utilizar el sistema para proporcionar una guía ecográfica en procedimientos de biopsia y drenaje, colocación de vías vasculares y bloqueo de nervios periféricos.

Configuración del sistema

Ajustes de conectividad (SonoSite SII)

En el manual para el usuario del sistema SonoSite SII todas las referencias a PDAS deben cambiarse a SiteLink; la revisión se realizará en la próxima actualización.

Configuración de conectividad (SonoSite Edge II)

En el manual para el usuario del sistema SonoSite Edge II se ha actualizado la siguiente referencia; la revisión se realizará en la próxima actualización.

Para habilitar la conexión inalámbrica

- Consulte Configuración de una conexión inalámbrica.
Ajustes del estado de la red

Si en la pantalla Network Status (Estado de la red) aparece un mensaje de fallo del dispositivo inalámbrico, es posible que su contraseña de red haya caducado. Asegúrese de tener una contraseña de red actualizada antes de conectar el dispositivo inalámbrico.

Adquisición de imágenes

El transductor C8x es compatible con guías de aguja tanto en sistemas SonoSite Edge II como en SonoSite SII.

Modos de imagen y exámenes disponibles según el transductor (SonoSite SII)

En la Tabla 4-5. Modos de imagen y exámenes disponibles según el transductor del manual para el usuario del sistema SonoSite SII; la revisión se realizará en la próxima actualización.

aA continuación se explican las abreviaturas del tipo de examen utilizadas: Abd = Abdomen, Art = Arterial, Bre = Mama, Crd = Cardíaco, Gyn = Ginecología, Msk = Musculoesquelético, Neo = Neonatal, Nrv = Nervio, OB = Obstétrico, Oph = Oftálmico, Pro = Próstata, SmP = Partes blandas, Spn = Columna, Sup = Superficial, Ven = Venoso.

bLos ajustes de optimización para el modo bidimensional son Res, Gen y Pen.

cLos ajustes de optimización para los modos DPC y Color son baja, media y alta (sensibilidad del flujo), con un intervalo de valores de FRI para el modo Color que depende del ajuste seleccionado.

Mediciones y cálculos (SonoSite SII)

Cálculos generales

Cálculo del volumen

ADVERTENCIAS

- Para evitar cálculos incorrectos, compruebe que la información del paciente y los ajustes de fecha y hora sean correctos.
- Para no realizar diagnósticos erróneos ni perjudicar al paciente, inicie un nuevo formulario de paciente antes de iniciar un nuevo examen del paciente y realizar cálculos. Cuando se inicia un formulario de paciente nuevo se borran los datos del paciente anterior. Los datos del paciente anterior se combinarán con los datos del paciente actual si no se borra primero el formulario.
El cálculo del volumen requiere tres mediciones bidimensionales de distancia: D1, D2 y D3. Una vez guardadas todas las mediciones, el resultado aparece en pantalla y en el informe del paciente.

El cálculo de volumen está disponible en los siguientes tipos de examen: abdominal, arterial, mamas, ginecológico, musculoesquelético, de nervio, de partes blandas, venoso y superficial.

Para calcular un volumen

Haga lo siguiente para cada imagen que necesite medir:

1 En una imagen bidimensional congelada, toque **Calcs** (Cálculos).

2 Haga lo siguiente para cada medición que necesite realizar:

a En el menú de cálculos, bajo **Volume** (Volumen), seleccione el nombre de la medición.

 Si **Volume** (Volumen) no está disponible en un examen obstétrico, seleccione **Gyn** (Ginecología) y luego, seleccione **Volume** (Volumen).

 b Utilice la almohadilla táctil o la pantalla táctil para posicionar los calibradores.

 c Toque **Save Calc** (Guardar cálculo) para guardar el cálculo.

 Aparecerá una marca de verificación junto a la medición guardada.

3 Para guardar una imagen del cálculo terminado, toque 📸.

4 Toque **Back** (Atrás) para salir del cálculo.

Referencias de medición (SonoSite SII)

La información siguiente no se incluyó en el manual para el usuario del sistema SonoSite SII; en la próxima actualización se realizará la revisión.
Exactitud de las mediciones

Tabla 1: Intervalo y exactitud de los cálculos y mediciones en el M mode

<table>
<thead>
<tr>
<th>Intervalo y exactitud de las mediciones en M mode</th>
<th>Tolerancia del sistema</th>
<th>Exactitud por</th>
<th>Método de prueba</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia</td>
<td>< +/- 2 % más 1 % de la escala completa<sup>a</sup></td>
<td>Adquisición</td>
<td>Modelo de simulación<sup>b</sup></td>
<td>0–26 cm</td>
</tr>
<tr>
<td>Tiempo</td>
<td>< +/- 2 % más 1 % de la escala completa<sup>c</sup></td>
<td>Adquisición</td>
<td>Modelo de simulación<sup>d</sup></td>
<td>0,01–10 s</td>
</tr>
<tr>
<td>Frecuencia cardíaca</td>
<td>< +/- 2 % más (escala completa<sup>c</sup> * frecuencia cardíaca/100) %</td>
<td>Adquisición</td>
<td>Modelo de simulación<sup>d</sup></td>
<td>5–923 lpm</td>
</tr>
</tbody>
</table>

^aLa escala completa para la distancia implica la máxima profundidad de la imagen.

^bSe utilizó un modelo de simulación RMI 413a con una atenuación de 0,7 dB/cm MHz.

^cLa escala completa para el tiempo denota el tiempo total mostrado en la imagen gráfica que se desplaza.

^dSe utilizó un equipo de prueba especial de FUJIFILM SonoSite.

Publicaciones y terminología relacionadas con las mediciones

Referencias generales

Ángulo de cadera/Prop. d:D

Reducción porcentual del área

Reducción porcentual del área = \[1 - \frac{A2(cm^2)}{A1(cm^2)}\] * 100

donde:
A1 = área original del vaso en cm cuadrados
A2 = área reducida del vaso en cm cuadrados
Reducción porcentual del diámetro

Reducción porcentual del diámetro = \[1 - \frac{D2(cm)}{D1(cm)}\] * 100

donde: D1 = diámetro original del vaso en cm
D2 = diámetro reducido del vaso en cm

Limpieza y desinfección

El sitio web siguiente se corrigió en los manuales para el usuario de los sistemas SonoSite Edge II y SonoSite SII; la revisión se realizará en la próxima actualización.

www.sonosite.com/products/transducers

Se ha actualizado la siguiente nota a pie de página en las tablas de limpieza y desinfección.

Para obtener un listado más completo de los limpiadores y desinfectantes autorizados, consulte la herramienta sobre desinfección y limpiadores disponible en www.sonosite.com/support/cleaners-disinfectants.

Seguridad

Seguridad clínica

En los manuales para el usuario de SonoSite Edge II y SonoSite SII se ha actualizado la siguiente advertencia; la revisión se realizará en la próxima actualización.

ADVERTENCIA

FUJIFILM SonoSite recomienda no usar dispositivos electromédicos de alta frecuencia (AF) cerca de sus sistemas. El equipo FUJIFILM SonoSite no ha sido autorizado para utilizarse con aparatos electroquirúrgicos de AF ni durante intervenciones con este tipo de aparatos. El uso de aparatos electroquirúrgicos de AF cerca de sus sistemas puede provocar un comportamiento anómalo del sistema o que este se apague.

Para evitar el riesgo de quemaduras, no utilice el transductor con equipos quirúrgicos de AF. Dicho peligro puede producirse en caso de que exista un fallo en la conexión de los electrodos neutros quirúrgicos de AF.
Compatibilidad electromagnética

Se ha examinado y determinado que el sistema de ecografía respeta los límites de compatibilidad electromagnética (CEM) para productos sanitarios especificados en las normas IEC 60601-1-2:2007 e IEC 60601-1-2:2014. El sistema de ecografía es adecuado para utilizarlo en el entorno de un centro sanitario profesional. Los equipos quirúrgicos de AF activos generan grandes alteraciones electromagnéticas que pueden interferir en el funcionamiento del sistema de ecografía. No se debe utilizar el sistema de ecografía en una habitación apantallada contra RF en la que haya equipos de resonancia magnética, ya que estos generan grandes alteraciones electromagnéticas que pueden interferir en el funcionamiento del sistema de ecografía. Estos límites han sido diseñados para proporcionarle una protección razonable frente a interferencias dañinas en una instalación médica típica.
Precauciones

> En los equipos electromédicos deben tomarse precauciones especiales en relación a la compatibilidad electromagnética. Los equipos deben ser instalados y manejados según estas instrucciones. Los equipos portátiles de comunicaciones de radiofrecuencia (incluidos los periféricos, como los cables de antenas y las antenas externas) deben utilizarse a una distancia de 30 cm como mínimo de cualquier pieza del sistema de ecografía, incluidos los cables especificados por FUJIFILM SonoSite. Los equipos de comunicación por radiofrecuencia portátiles y móviles pueden afectar al sistema de ecografía. Las interferencias electromagnéticas (IEM) de otros equipos o fuentes de interferencia pueden traducirse en una interrupción del rendimiento del sistema de ecografía. Algunos síntomas de interferencia son mala calidad o distorsión de la imagen, lecturas irregulares, interrupción del funcionamiento del equipo u otros tipos de funcionamiento incorrecto. Si ocurre esto, inspeccione el lugar para encontrar la posible fuente de interferencia y tome las siguientes medidas para eliminarla.

> Apague y encienda los dispositivos cercanos para determinar cuál es el que causa la interferencia.
> Cambie de lugar u orientación el equipo que causa la interferencia.
> Aumente la distancia entre el equipo que causa la interferencia y el sistema de ecografía.
> Regule el uso de frecuencias próximas a las del sistema de ecografía.
> Retire los dispositivos sensibles a las interferencias electromagnéticas.
> Disminuya la intensidad de las fuentes internas que estén bajo el control del centro (como los buscapersonas).
> Ponga etiquetas en los equipos susceptibles a las interferencias electromagnéticas.
> Instruya al personal clínico para que pueda reconocer posibles problemas relacionados con las interferencias electromagnéticas.
> Elimine o reduzca las interferencias electromagnéticas mediante soluciones técnicas (como blindajes).
> Limite el uso de dispositivos de comunicación personal (móviles, portátiles) en zonas donde existan dispositivos sensibles a las interferencias electromagnéticas.
> Comparta la información de compatibilidad electromagnética con otras personas, especialmente si se están evaluando equipos adquiridos recientemente que pueden generar interferencias electromagnéticas.
> Adquiera productos sanitarios que cumplan la norma de compatibilidad electromagnética IEC 60601-1-2.

> No apile otros equipos sobre el sistema de ecografía ni utilice otros equipos cerca o junto al sistema de ecografía. Si no se puede evitar, debe observar si el sistema funciona con normalidad.
Nota

Las características de las emisiones de los sistemas de ecografía SonoSite Edge II y SII los hacen aptos para utilizarlos en áreas industriales y hospitales (clase A según CISPR 11). En caso de utilizar uno de estos sistemas de ecografía en un entorno residencial (en el que normalmente se tengan que emplear equipos de clase B según CISPR 11), es posible que este no ofrezca una protección adecuada frente a los servicios de comunicaciones por radiofrecuencia. Puede ser necesario adoptar medidas para mitigarlas, como por ejemplo, reubicar o reorientar el equipo.

Transmisión inalámbrica

Los sistemas de ecografía SonoSite Edge II y SII incorporan dos soluciones inalámbricas.

- La mochila USB inalámbrica (Panda) es un adaptador inalámbrico pequeño que se enchufa en el puerto USB situado en:
 - La parte derecha del sistema de ecografía Edge II.
 - La parte superior del sistema de ecografía SII.
- El módulo inalámbrico y de seguridad (Laird) es un módulo que se monta en:
 - La tapa del sistema de ecografía Edge II y que luego se enchufa en el sistema con un cable USB en ángulo hacia la derecha.
 - El brazo de soporte del transductor del sistema de ecografía SII y que luego se enchufa en el sistema con un cable USB de 30 cm.

Consulte, de entre los datos siguientes, los datos de transmisión de cada uno.

Mochila USB inalámbrica (Panda)

La mochila USB inalámbrica utiliza bandas de frecuencia de aparatos industriales, científicos y médicos (ICM) de 2,412 a 2,4835 GHz, en función de la normativa de su país. La mochila implementa cuatro métodos diferentes de transmisión:

- IEEE 802.11b con espectro de difusión de secuencia directa (DSSS) a 19 dBm: Velocidad máxima 54 Mbps, Rendimiento máximo: 27 Mbps
- IEEE 802.11g con multiplexación por división de frecuencia ortogonal (OFDM) a 16 dBm Velocidad máxima 54 Mbps, Rendimiento máximo: 27 Mbps
- IEEE 802.11n con multiplexación por división de frecuencia ortogonal (OFDM) a 15 dBm
 - 1T1R. Velocidad máxima: 150 Mbps, Rendimiento máximo: 90 Mbps
 - 1T2R. Velocidad máxima: 300 Mbps, Rendimiento máximo: Rx 160 Mbps
 - 2T2R. Velocidad máxima: 300 Mbps, Rendimiento máximo: Rx 260 Mbps
Módulo inalámbrico y de seguridad (Laird)

El módulo inalámbrico y de seguridad utiliza bandas de frecuencia de aparatos industriales, científicos y médicos (ICM) de 1,400 a 2,4835 GHz, y de 5,100 a 5,800 GHz. El módulo implementa cuatro métodos diferentes de transmisión:

- IEEE 802.11a con multiplexación por división de frecuencia ortogonal (OFDM) a 11 dBm ± 2 dBm a 54 Mbps
- IEEE 802.11b con espectro de difusión de secuencia directa (DSSS) a 16 dBm ± 2,0 dBm a 11 Mbps
- IEEE 802.11g con multiplexación por división de frecuencia ortogonal (OFDM) a 13 dBm ± 2,0 dBm a 54 Mbps
- IEEE 802.11n con multiplexación por división de frecuencia ortogonal (OFDM) a 12 dBm ± 2,0 dBm (802.11gn) a MCS7

Accesorios y periféricos compatibles (SonoSite Edge II)

FUJIFILM SonoSite ha examinado el sistema de ecografía SonoSite Edge II con los siguientes accesorios y dispositivos periféricos y ha demostrado que cumple los requisitos de las normas IEC 60601-1-2:2007 e IEC 60601-1-2:2014.

Con el sistema de ecografía SonoSite Edge II, puede usar los siguientes accesorios de FUJIFILM SonoSite y dispositivos periféricos de terceros.

ADVERTENCIAS

- El uso de los accesorios con sistemas médicos distintos al sistema de ecografía Edge podría provocar un aumento de las emisiones o la disminución de la inmunidad del sistema médico.
- El uso de accesorios distintos a los especificados podría tener como resultado el aumento de las emisiones o la disminución de la inmunidad del sistema de ecografía.
- El sistema de ecografía no se debe usar en un entorno doméstico ni conectado a la red de electricidad pública.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Longitud máxima del cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transductor C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor rC60xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tabla 2: Accesorios y periféricos compatibles con el sistema de ecografía Edge (continuación)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Longitud máxima del cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transductor HFL38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transductor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor L25x estándar/blindado</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transductor L38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor L52x<sup>a</sup></td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transductor P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor rP19x estándar/blindado</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor TEExi</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Lector de códigos de barras</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batería para PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Bloque de batería</td>
<td>—</td>
</tr>
<tr>
<td>Batería para PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Impresora en blanco y negro</td>
<td>—</td>
</tr>
<tr>
<td>Cable de alimentación de la impresora en blanco y negro</td>
<td>1 m</td>
</tr>
<tr>
<td>Impresora en color</td>
<td>—</td>
</tr>
<tr>
<td>Cable de alimentación de impresora en color</td>
<td>1 m</td>
</tr>
<tr>
<td>Cable de vídeo de impresora en color</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cables de electrodos de ECG</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Módulo de ECG</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cable secundario de ECG</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Módulo de acoplamiento de SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Soporte de SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Pedal</td>
<td>3 m</td>
</tr>
</tbody>
</table>
FUJIFILM SonoSite ha probado el sistema de ecografía SonoSite SII con los siguientes accesorios y dispositivos periféricos, y ha demostrado que cumplen los requisitos dispuestos en la norma IEC 60601-1-2:2007 e IEC 60601-1-2:2014.

Con el sistema de ecografía SonoSite SII, puede usar los siguientes accesorios de FUJIFILM SonoSite y dispositivos periféricos de terceros.

Advertencias

- El uso de los accesorios con sistemas médicos distintos al sistema de ecografía SonoSite SII podría provocar un aumento de las emisiones o la disminución de la inmunidad del sistema médico.

- El uso de accesorios distintos a los especificados podría tener como resultado el aumento de las emisiones o la disminución de la inmunidad del sistema de ecografía.

Tabla 3: Accesorios y periféricos compatibles con el sistema de ecografía SonoSite SII

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Longitud máxima del cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transductor C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Descripción</td>
<td>Longitud máximo del cable</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Transductor C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor rC60xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HFL38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transductor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor L25x estándar/blindado</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transductor L38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transductor P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor rP19x estándar/blindado</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Lector de códigos de barras</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batería para PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Bloque de batería</td>
<td>—</td>
</tr>
<tr>
<td>Batería para PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Impresora en blanco y negro</td>
<td>—</td>
</tr>
<tr>
<td>Cable de alimentación de la impresora en blanco y negro</td>
<td>1 m</td>
</tr>
<tr>
<td>Cable de control de impresora en blanco y negro</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cable de video de impresora en blanco y negro</td>
<td>1,9 m</td>
</tr>
<tr>
<td>Pedal</td>
<td>3 m</td>
</tr>
<tr>
<td>Cable USB alargador con pedal</td>
<td>2 m</td>
</tr>
<tr>
<td>Soporte de SonoSite SII</td>
<td>—</td>
</tr>
<tr>
<td>Cable de alimentación (sistema)</td>
<td>3 m</td>
</tr>
<tr>
<td>Fuente de alimentación con cable de CC</td>
<td>2 m</td>
</tr>
<tr>
<td>Fuente de alimentación con cable de CA</td>
<td>1 m</td>
</tr>
</tbody>
</table>
Para los transductores, la longitud máxima del cable se mide entre cada protección contra tirones. La longitud mencionada no incluye las longitudes de cable en los siguientes puntos: debajo de las protecciones contra tirones, dentro de la caja del transductor y dentro del conector del transductor.

Declaración del fabricante

Las tablas de este apartado muestran el entorno de uso previsto y los niveles de cumplimiento de compatibilidad electromagnética del sistema. Para obtener un rendimiento máximo, asegúrese de que el sistema se utilice en entornos como los descritos en la tabla.

El sistema ha sido diseñado para utilizarse en el entorno electromagnético especificado a continuación.

<table>
<thead>
<tr>
<th>Ensayo de emisiones</th>
<th>Cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de radiofrecuencia CISPR 11</td>
<td>Grupo 1</td>
<td>El sistema de ecografía Edge II y SII utiliza energía de radiofrecuencia solo para su funcionamiento interno. Por lo tanto, las emisiones de radiofrecuencia son muy bajas y no es probable que causen interferencias en equipos electrónicos cercanos.</td>
</tr>
<tr>
<td>Emisiones de radiofrecuencia CISPR 11</td>
<td>Clase A</td>
<td>Los sistemas de ecografía Edge II y SII se puede utilizar en todo tipo de edificios que no sean residenciales ni tengan una conexión directa a la red eléctrica pública de baja tensión que suministra energía a edificios residenciales.</td>
</tr>
<tr>
<td>Emisiones de armónicos IEC 61000-3-2</td>
<td>Clase A</td>
<td></td>
</tr>
<tr>
<td>Fluctuaciones/parpadeo de tensión IEC 61000-3-3</td>
<td>Conforme</td>
<td></td>
</tr>
</tbody>
</table>
El sistema ha sido diseñado para utilizarse en el entorno electromagnético especificado a continuación.

Tabla 5: Declaración del fabricante: inmunidad electromagnética (IEC 60601-1-2:2007)

<table>
<thead>
<tr>
<th>Ensayo de inmunidad</th>
<th>Nivel de ensayo IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2 sobre descargas electrostáticas</td>
<td>± 2,0 KV, ± 4,0 KV, ± 6,0 KV contacto ± 2,0 KV, ± 4,0 KV, ± 8,0 KV aire</td>
<td>± 2,0 KV, ± 4,0 KV, ± 6,0 KV contacto ± 2,0 KV, ± 4,0 KV, ± 8,0 KV aire</td>
<td>Los suelos deben ser de madera, cemento o baldosa cerámica. Si los suelos están cubiertos con material sintético, la humedad relativa debe ser por lo menos de un 30 %.</td>
</tr>
<tr>
<td>Transitorios eléctricos rápidos/ráfagas IEC 61000-4-4</td>
<td>± 2 KV en la red ± 1 KV en las líneas de señal</td>
<td>± 2 KV en la red ± 1 KV en las líneas de señal</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>Picos de sobretensión IEC 61000-4-5</td>
<td>± 1 KV línea(s) a línea(s) ± 2 KV línea(s) a tierra</td>
<td>± 1 KV línea(s) a línea(s) ± 2 KV línea(s) a tierra</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>Caídas de tensión, interrupciones breves y variaciones de tensión en líneas de alimentación eléctrica IEC 61000-4-11</td>
<td>< 5 % U_T (> 95 % de caída en U_T) durante medio ciclo 40 % U_T (60 % de caída en U_T) durante 5 ciclos 70 % U_T (30 % de caída en U_T) durante 25 ciclos < 5 % U_T (> 95 % de caída en U_T) durante 5 s</td>
<td>< 5 % U_T (> 95 % de caída en U_T) durante medio ciclo 40 % U_T (60 % de caída en U_T) durante 5 ciclos 70 % U_T (30 % de caída en U_T) durante 25 ciclos < 5 % U_T (> 95 % de caída en U_T) durante 5 s</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios. Si el usuario necesita que el sistema de ecografía FUJIFILM SonoSite funcione de forma continua durante una interrupción del suministro eléctrico, se recomienda suministrar energía al sistema FUJIFILM SonoSite desde una fuente de alimentación ininterrumpida o una batería.</td>
</tr>
</tbody>
</table>
Tabla 5: Declaración del fabricante: inmunidad electromagnética (IEC 60601-1-2:2007)

<table>
<thead>
<tr>
<th>Ensayo de inmunidad</th>
<th>Nivel de ensayo IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo magnético de frecuencia de red IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Si se producen distorsiones en la imagen, puede ser necesario situar el sistema de ecografía FUJIFILM SonoSite alejado de fuentes de campos magnéticos a frecuencia industrial o bien colocar algún tipo de blindaje magnético. El campo magnético a frecuencia industrial debe medirse en la localización de instalación prevista para garantizar que es lo suficientemente bajo.</td>
</tr>
<tr>
<td>RF conducida IEC 61000-4-6</td>
<td>3 Vrms De 150 kHz a 80 MHz</td>
<td>3 Vrms</td>
<td>Los equipos de comunicación portátiles y móviles no se deben utilizar a una distancia menor de ninguna pieza del sistema de ecografía FUJIFILM SonoSite (incluidos los cables) que la distancia de separación recomendada calculada a partir de la ecuación aplicable a la frecuencia del transmisor. Distancia de separación recomendada (d = 1,2\sqrt{P})</td>
</tr>
</tbody>
</table>
Declaración del fabricante

Radiofrecuencia radiada
IEC 61000-4-3

3 V/m
De 80 MHz a 2,5 GHz

3 V/m
De 80 MHz a 2,5 GHz

\[d = 1,2 \sqrt{P} \text{ de 80 MHz a 800 MHz} \]
\[d = 2,3 \sqrt{P} \text{ de 800 MHz a 2,5 GHz} \]

Donde \(P \) es la potencia nominal máxima de salida del transmisor en vatios (10) según el fabricante del transmisor y \(d \) es la distancia de separación recomendada en metros (m).

Las intensidades de campo de los transmisores de radiofrecuencia fija, determinadas por una inspección electromagnética in situ\(^a\), deben ser inferiores al nivel de cumplimiento en cada intervalo de frecuencia\(^b\). Se pueden producir interferencias en las proximidades de los equipos marcados con el siguiente símbolo:

(IEC 60417 No. 417-IEC-5140: “Fuente de radiación no ionizante”)

Nota

\(U_T \) es la tensión de CA de la red antes de aplicar el nivel de ensayo. A 80 MHz y 800 MHz, se aplica el intervalo de frecuencia más alto. Es posible que estas directrices no sean aplicables en todas las situaciones. La transmisión electromagnética se ve afectada por la absorción y reflexión de estructuras, objetos y personas.

a. No se pueden predecir teóricamente con precisión las intensidades de campo de transmisores fijos como estaciones base de radioteléfonos (móviles/inalámbricos) y radios terrestres móviles, equipos de radioaficionado, radiodifusión en AM y FM y televisión. Para evaluar el entorno electromagnético en relación con transmisores de radiofrecuencia fijos, debe considerarse la posibilidad de realizar una inspección electromagnética del lugar. Si la intensidad medida del campo en el lugar en el que se utiliza el sistema de ecografía FUJIFILM SonoSite supera el nivel de cumplimiento de radiofrecuencia aplicable anteriormente mencionado, deberá observarse el sistema de ecografía FUJIFILM SonoSite para verificar que presenta un funcionamiento normal. Si se observa un rendimiento anormal, puede ser necesario adoptar medidas adicionales, como cambiar de posición u orientación el sistema de ecografía FUJIFILM SonoSite.

b. En el intervalo de frecuencia de 150 kHz a 80 MHz, las intensidades de campo deberían ser inferiores a 3 V/m.
Tabla 6: Declaración del fabricante: inmunidad electromagnética (IEC 60601-1-2:2014)

<table>
<thead>
<tr>
<th>Ensayo de inmunidad</th>
<th>Nivel de ensayo IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2 sobre descargas electrostáticas</td>
<td>± 2,0 KV, ± 4,0 KV, ± 8,0 KV aire, ± 15 KV</td>
<td>± 8,0KV, ± 4,0 KV, ± 8,0 KV aire, ± 15 KV</td>
<td>Los suelos deben ser de madera, cemento o baldosa cerámica. Si los suelos están cubiertos con material sintético, la humedad relativa debe ser por lo menos de un 30 %.</td>
</tr>
<tr>
<td>Transitorios eléctricos rápidos/ráfagas</td>
<td>± 1 KV en la red</td>
<td>± 2 KV en la red</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>± 2 KV línea(s) a tierra</td>
<td>± 1 KV línea(s) a tierra</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>Picos de sobretensión</td>
<td>± 1 KV línea(s) a línea(s)</td>
<td>± 1 KV línea(s) a línea(s)</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>± 2 KV línea(s) a tierra</td>
<td>± 2 KV línea(s) a tierra</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios.</td>
</tr>
<tr>
<td>Caídas de tensión, interrupciones breves y variaciones de tensión en líneas de alimentación eléctrica IEC 61000-4-11</td>
<td>0 % de caída en U_T durante medio ciclo 0 % de caída en U_T durante 5 ciclos 70 % U_T (30 % de caída en U_T) durante 500 ciclos $< 5 % U_T$ (> 95 % de caída en U_T) durante 5 s</td>
<td>0 % de caída en U_T durante medio ciclo 0 % de caída en U_T durante 5 ciclos 70 % U_T (30 % de caída en U_T) durante 500 ciclos $< 5 % U_T$ (> 95 % de caída en U_T) durante 5 s</td>
<td>La calidad de la red eléctrica debe ser la típica de los entornos comerciales u hospitalarios. Si el usuario necesita que el sistema de ecografía FUJIFILM SonoSite funcione de forma continua durante una interrupción del suministro eléctrico, se recomienda suministrar energía al sistema FUJIFILM SonoSite desde una fuente de alimentación ininterrumpida o una batería.</td>
</tr>
<tr>
<td>Campo magnético de frecuencia de red IEC 61000-4-8</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>Si se producen distorsiones en la imagen, puede ser necesario situar el sistema de ecografía FUJIFILM SonoSite alejado de fuentes de campos magnéticos a frecuencia industrial o bien colocar algún tipo de blindaje magnético. El campo magnético a frecuencia industrial debe medirse en la localización de instalación prevista para garantizar que es lo suficientemente bajo.</td>
</tr>
</tbody>
</table>
Tabla 6: Declaración del fabricante: inmunidad electromagnética (IEC 60601-1-2:2014)

<table>
<thead>
<tr>
<th>Ensayo de inmunidad</th>
<th>Nivel de ensayo IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
</table>
| RF conducida IEC 61000-4-6 | 3 Vrms De 150 kHz a 80 MHz 6 Vrms en franjas ISM | 3 Vrms | Los equipos de comunicación por radiofrecuencia portátiles y móviles no se deben utilizar a una distancia menor de ninguna pieza del sistema de ecografía FUJIFILM SonoSite (incluidos los cables) que la distancia de separación recomendada calculada a partir de la ecuación aplicable a la frecuencia del transmisor. Distancia de separación recomendada:
\[d = 1,2\sqrt{P} \] |
| Radiofrecuencia radiada IEC 61000-4-3 | 3 V/m De 80 MHz a 2,7 GHz | 3 V/m De 80 MHz a 2,7 GHz |
\[d = 1,2\sqrt{P} \] de 80 MHz a 800 MHz
\[d = 2,3\sqrt{P} \] de 800 MHz a 2,5 GHz
Donde \(P \) es la potencia nominal máxima de salida del transmisor en vatios (10) según el fabricante del transmisor y \(d \) es la distancia de separación recomendada en metros (m). |

Las intensidades de campo de los transmisores de radiofrecuencia fija, determinadas por una inspección electromagnética in situ, deben ser inferiores al nivel de cumplimiento en cada intervalo de frecuencia. Se pueden producir interferencias en las proximidades de los equipos marcados con el siguiente símbolo:

(IEC 60417 No. 417-IEC-5140: “Fuente de radiación no ionizante”)

210 Declaración del fabricante

<table>
<thead>
<tr>
<th>Ensayo de inmunidad</th>
<th>Nivel de ensayo IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nota</td>
<td>U_T es la tensión de CA de la red antes de aplicar el nivel de ensayo. A 80 MHz y 800 MHz, se aplica el intervalo de frecuencia más alto. Es posible que estas directrices no sean aplicables en todas las situaciones. La transmisión electromagnética se ve afectada por la absorción y reflexión de estructuras, objetos y personas.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. No se pueden predecir teóricamente con precisión las intensidades de campo de transmisores fijos como estaciones base de radioteléfonos (móviles/inalámbricos) y radios terrestres móviles, equipos de radioaficionado, radiodifusión en AM y FM y televisión. Para evaluar el entorno electromagnético en relación con transmisores de radiofrecuencia fijos, debe considerarse la posibilidad de realizar una inspección electromagnética del lugar. Si la intensidad medida del campo en el lugar en el que se utiliza el sistema de ecografía FUJIFILM SonoSite supera el nivel de cumplimiento de radiofrecuencia aplicable anteriormente mencionado, deberá observarse el sistema de ecografía FUJIFILM SonoSite para verificar que presenta un funcionamiento normal. Si se observa un rendimiento anormal, puede ser necesario adoptar medidas adicionales, como cambiar de posición u orientación el sistema de ecografía FUJIFILM SonoSite.
b. En el intervalo de frecuencia de 150 kHz a 80 MHz, las intensidades de campo deberían ser inferiores a 3 V/m.

Aviso de la FCC: El presente equipo ha sido probado y se ha demostrado conforme con los límites para un dispositivo digital de clase A, conforme a la Parte 15 de las normas de la FCC. Estos límites están diseñados para proporcionar una protección razonable contra interferencias dañinas cuando se utiliza el equipo en un entorno comercial. Este equipo genera, utiliza y puede emitir energía de radiofrecuencia y, si no se instala y utiliza conforme al manual de instrucciones, puede provocar interferencias perjudiciales en las comunicaciones radioeléctricas. Es probable que el funcionamiento de este equipo en un área residencial provoque interferencias dañinas, en cuyo caso se le pedirá al usuario que corrija las interferencias y corra con los gastos.

Accesorios y periféricos compatibles

La advertencia siguiente se añadió a los manuales para el usuario de SonoSite Edge II y SonoSite SII; la revisión se realizará en la próxima actualización.

ADVERTENCIA

Si hay periféricos conectados al sistema, compruebe que tanto el sistema como los periféricos estén conectados al mismo circuito de derivación de la red de CA.
Tabla 7: Símbolos de etiquetado normativo

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fabricante</td>
<td>ISO 15223-1:2016 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar. Parte 1: Requisitos generales</td>
<td>5.1.1</td>
<td>Indica el fabricante del producto sanitario, según las Directivas 90/385/CEE, 93/42/CEE y 98/79/CE de la UE.</td>
</tr>
<tr>
<td></td>
<td>Radiación electromagnética no ionizante</td>
<td>IEC 60601-1-2:2007 Equipos electromédicos. Parte 1-2: Requisitos generales para la seguridad básica y funcionamiento esencial. Norma colateral: Compatibilidad electromagnética.</td>
<td>5.1.1</td>
<td>Señala unos niveles de radiación no ionizante normalmente altos y potencialmente peligrosos, o para señalar los sistemas o equipos (por ejemplo, de una zona electromédica) que incluyen transmisores de radiofrecuencia o que aplican de forma intencionada energía electromagnética de radiofrecuencia para fines de diagnóstico o de tratamiento.</td>
</tr>
<tr>
<td></td>
<td>Representante autorizado en la Comunidad Europea</td>
<td>ISO 15223-1 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar.</td>
<td>5.1.2</td>
<td>Indica el representante autorizado en la Comunidad Europea.</td>
</tr>
<tr>
<td></td>
<td>Número de serie</td>
<td>ISO 15223-1:2016 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar. Parte 1: Requisitos generales</td>
<td>5.1.7</td>
<td>Indica el número de serie del fabricante para poder identificar el producto sanitario específico.</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>![REF]</td>
<td>Número de referencia</td>
<td>ISO 15223-1:2016</td>
<td>5.1.6</td>
<td>Indica el número de referencia del fabricante para poder identificar el producto sanitario.</td>
</tr>
<tr>
<td>![Exclamation mark]</td>
<td>Precaución</td>
<td>ISO 15223-1:2016</td>
<td>5.4.4</td>
<td>Indica la necesidad del usuario de consultar las instrucciones de uso para obtener información admonitoria importante, como las advertencias y precauciones, que no pueden, por diferentes razones, presentarse en el propio producto sanitario.</td>
</tr>
<tr>
<td>![Glass]</td>
<td>Frágil, manipule con cuidado</td>
<td>ISO 15223-1:2016</td>
<td>5.3.1</td>
<td>Indica un producto sanitario que puede romperse o dañarse si no se manipula con cuidado.</td>
</tr>
<tr>
<td>![Umbrella]</td>
<td>Mantener seco</td>
<td>ISO 15223-1:2016</td>
<td>5.3.4</td>
<td>Indica un producto sanitario que necesita protegerse de la humedad.</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagrama Límite de temperatura]</td>
<td>Límite de temperatura</td>
<td>ISO 15223-1:2016</td>
<td>5.3.7</td>
<td>Indica los límites de temperatura a los que puede exponerse de manera segura el producto sanitario.</td>
</tr>
<tr>
<td>![Diagrama Limitación de presión atmosférica]</td>
<td>Limitaciones de presión atmosférica</td>
<td>ISO 15223-1:2016</td>
<td>5.3.9</td>
<td>Indica el rango de presión atmosférica al que puede exponerse de manera segura el producto sanitario.</td>
</tr>
<tr>
<td>![Diagrama Limitación de humedad]</td>
<td>Limitación de humedad</td>
<td>ISO 15223-1:2016</td>
<td>5.3.8</td>
<td>Indica el rango de humedad al que puede exponerse de manera segura el producto sanitario.</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>![i]</td>
<td>Consulte las instrucciones de uso</td>
<td>ISO 15223-1:2016 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar. Parte 1: Requisitos generales</td>
<td>5.4.3</td>
<td>Indica la necesidad de que el usuario consulte las instrucciones de uso.</td>
</tr>
<tr>
<td>![~]</td>
<td>Corriente alterna</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>5032</td>
<td>Indica, en la placa de características, que el equipo solo es apto para corriente alterna, para identificar los terminales adecuados.</td>
</tr>
<tr>
<td>![ce]</td>
<td>Marca CE</td>
<td>Directiva del Consejo 93/42/CEE</td>
<td>Artículo 17 Anexo XII</td>
<td>Significa Conformidad técnica europea</td>
</tr>
<tr>
<td>![ce]</td>
<td>Conformité Européene N.º de referencia del organismo notificado: 2797</td>
<td>Directiva del Consejo 93/42/CEE</td>
<td>Artículo 17 Anexo XII</td>
<td>Indica que cumple los requisitos técnicos europeos e identifica al organismo notificado que es responsable de la aplicación de los procedimientos establecidos en los Anexos II, IV, V y VI.</td>
</tr>
<tr>
<td>![!]</td>
<td>Tensión peligrosa</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>5036</td>
<td>Indica peligros derivados de la tensión peligrosa.</td>
</tr>
<tr>
<td>![n]</td>
<td>Límite de apilado por número</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>2403</td>
<td>Indica que el artículo no se puede apilar verticalmente más allá del número de artículos especificado.</td>
</tr>
<tr>
<td>![ss]</td>
<td>Precaución, caliente</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>5041</td>
<td>Indica que el artículo marcado puede estar caliente y no debe tocarse sin tomar precauciones.</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precaución, riesgo de campo magnético estático</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>6204</td>
<td>Identifica zonas con fuerzas y campos magnéticos estáticos potencialmente peligrosos en una instalación.</td>
</tr>
<tr>
<td></td>
<td>Partes aplicadas de tipo BF</td>
<td>IEC 60601-1 Equipos electromédicos. Parte 1: Requisitos generales para la seguridad básica y funcionamiento esencial.</td>
<td>D.2-10</td>
<td>Identifica una parte aplicada tipo BF que cumple la norma IEC 60601-1.</td>
</tr>
<tr>
<td></td>
<td>Parte aplicada de tipo CF a prueba de desfibrilación</td>
<td>IEC 60601-1 Equipos electromédicos. Parte 1: Requisitos generales para la seguridad básica y funcionamiento esencial.</td>
<td>D.1-27</td>
<td>Identifica una parte aplicada tipo CF a prueba de desfibrilación que cumple la norma IEC 60601-1.</td>
</tr>
<tr>
<td></td>
<td>Dispositivo susceptible a la electricidad estática</td>
<td>IEC 60417:2002 Símbolos gráficos para utilizar en equipos.</td>
<td>5134</td>
<td>Indica embalajes que contienen dispositivos susceptibles a la electricidad estática o identifica un dispositivo o un conector al que no se han realizado pruebas de inmunidad a descargas electrostáticas.</td>
</tr>
<tr>
<td></td>
<td>Marca reglamentaria de conformidad (RCM)</td>
<td>AS/NZS3820</td>
<td>—</td>
<td>C-Tick: marca reglamentaria de conformidad en Australia y Nueva Zelanda. El sistema cumple las normativas australianas y neozelandesas pertinentes en materia de dispositivos electrónicos.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Título</td>
<td>Organismo de normalización</td>
<td>Número de referencia</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Código de lote, código de fecha o tipo de código lote del número de control</td>
<td>ISO 15223-1 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar. Parte 1: Requisitos generales</td>
<td>5.1.5</td>
<td>Indica el código de lote del fabricante para que se pueda identificar el lote</td>
</tr>
<tr>
<td></td>
<td>Riesgo biológico</td>
<td>ISO 7010 - Símbolos gráficos. Colores y señales de seguridad</td>
<td>W009</td>
<td>Para advertir de riesgos biológicos</td>
</tr>
<tr>
<td></td>
<td>Símbolos de seguridad INMETRO</td>
<td>—</td>
<td>—</td>
<td>Indica el organismo de certificación acreditado en Brasil por el Instituto Nacional de Metrología, Calidad y Tecnología (INMETRO)</td>
</tr>
<tr>
<td></td>
<td>Marca de certificación de la Canadian Standards Association.</td>
<td>—</td>
<td>—</td>
<td>La marca de certificación CSA significa que el producto cumple los requisitos aplicables de la CSA y de ANSI/UL y que tiene autorización para utilizarlo en Canadá y los EE. UU.</td>
</tr>
<tr>
<td></td>
<td>Reciclaje: Equipos electrónicos</td>
<td>BS EN 50419:2016 Marca de aparatos eléctricos y electrónicos de acuerdo con la Directiva 2012/19/UE (RAEE).</td>
<td>Anexo IX</td>
<td>No tirar a la basura</td>
</tr>
<tr>
<td></td>
<td>Reciclaje de cartón corrugado</td>
<td>—</td>
<td>—</td>
<td>La caja de transporte está hecha de cartón corrugado y debería reciclarse en consecuencia.</td>
</tr>
<tr>
<td></td>
<td>Fecha de fabricación</td>
<td>ISO 7000: Símbolos gráficos para utilizar en equipos.</td>
<td>5.1.3</td>
<td>Para indicar la fecha en que se fabricó un producto</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corriente continua (CC)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GEL</td>
<td>Gel</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>![Recycling logo]</td>
<td>Resy – Símbolo de reciclaje</td>
<td>—</td>
<td>—</td>
<td>Reciclaje del papel</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica que se manipule con cuidado.</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica que se cumpla con el tiempo de desinfección especificado en las instrucciones del fabricante.</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica que desinfecte el transductor.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Título</td>
<td>Organismo de normalización</td>
<td>Número de referencia</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Carga máxima de peso</td>
<td>IEC 60601-1 Equipos electromédicos. Parte 1: Requisitos generales para la seguridad básica y funcionamiento esencial.</td>
<td>7.2.21</td>
<td>Indica el peso total del equipo, incluida la carga operativa segura.</td>
</tr>
<tr>
<td></td>
<td>Marca de certificación de Underwriters Laboratories</td>
<td>—</td>
<td>—</td>
<td>Marca de certificación solo cuando hay riesgos de descargas eléctricas, incendios o de tipo mecánicos.</td>
</tr>
<tr>
<td></td>
<td>Certificación UL del producto.</td>
<td>—</td>
<td>—</td>
<td>El producto o la empresa cumplen con las normas más rigurosas de seguridad del producto.</td>
</tr>
<tr>
<td></td>
<td>Control de la contaminación en China (10)</td>
<td>ISO 7000:2014 Símbolos gráficos para utilizar en equipos.</td>
<td>1135</td>
<td>Logotipo del Control de la contaminación. (Se aplica a todas las piezas/productos enumerados en la tabla relativa a la conformidad con la normativa RoHS en China. Es posible que no aparezca en el exterior de algunas piezas/productos debido a limitaciones de espacio.)</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Título</td>
<td>Organismo de normalización</td>
<td>Número de referencia</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Marca de certificación obligatoria en China ("Marca CCC"). Marca de seguridad obligatoria de cumplimiento de las normas nacionales chinas para numerosos productos vendidos en la República Popular China.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>STERILE EO</td>
<td>Esterilizado utilizando óxido de etileno</td>
<td>ISO 15223-1</td>
<td>5.2.3</td>
<td>Señala un producto sanitario que se ha esterilizado mediante óxido de etileno.</td>
</tr>
<tr>
<td>STERILE R</td>
<td>Esterilizado con radiación</td>
<td>ISO 15223-1</td>
<td>5.2.4</td>
<td>Señala un producto sanitario que se ha esterilizado mediante radiación.</td>
</tr>
</tbody>
</table>
Tabla 7: Símbolos de etiquetado normativo (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organismo de normalización</th>
<th>Número de referencia</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>(Solo en SII) Número de referencia</td>
<td>ISO 15223-1:2016 Productos sanitarios. Símbolos que se deben utilizar en las etiquetas, el etiquetado e información que se debe suministrar. Parte 1: Requisitos generales</td>
<td>5.1.6</td>
<td>Indica el número de referencia del fabricante para poder identificar el producto sanitario.</td>
</tr>
<tr>
<td></td>
<td>(Solo en SII) Tensión peligrosa</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>5036</td>
<td>Indica peligros derivados de la tensión peligrosa.</td>
</tr>
<tr>
<td></td>
<td>(Solo en SII) Solo para uso en interiores</td>
<td>ISO 7000/IEC 60417 Símbolos gráficos para utilizar en equipos.</td>
<td>5957</td>
<td>Señala equipos eléctricos diseñados principalmente para uso en interiores</td>
</tr>
</tbody>
</table>

Especificaciones

Transductores compatibles (SonoSite SII)

El siguiente apartado repetido se eliminó del manual para el usuario de SonoSite SII. La misma información aparece en la tabla 9-2 del manual para el usuario del sistema; la revisión se realizará en la próxima actualización.

Tabla 8: Transductores compatibles

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Longitud máxima del cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transductor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transductor rC60xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HFL38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor HSL25x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transductor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transductor L25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transductor L38xi estándar/blindado</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Normas

Normas relativas a la seguridad electromecánica

Tabla 9: Normas relativas a la seguridad electromecánica

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
</tr>
</thead>
</table>
Emisión acústica

Criterio ALARA

Aplicación del criterio ALARA

El modo de adquisición de imágenes seleccionado por el ecografista dependerá de la información diagnóstica que se desee obtener. El modo de imagen bidimensional proporciona información anatómica; las imágenes DPC ofrecen información acerca de la energía o de la fuerza de la amplitud de la señal Doppler a lo largo del tiempo en una estructura anatómica determinada y se utilizan para detectar la presencia de flujo sanguíneo; las imágenes en color proporcionan información sobre la energía o la fuerza de la amplitud de la señal Doppler a lo largo del tiempo en una estructura anatómica determinada y se utilizan para detectar la presencia, la velocidad y la dirección del flujo sanguíneo; y las imágenes armónicas tisulares (THI) utilizan las frecuencias superiores recibidas para reducir las interferencias y los artefactos y para mejorar la resolución de las imágenes bidimensionales. Como el ecografista entiende la naturaleza del modo de adquisición de imágenes que utiliza, puede aplicar el criterio ALARA.

El uso prudente de la ecografía aconseja limitar la exposición del paciente al nivel de ultrasonidos más bajo durante el período de tiempo más breve posible necesario para lograr resultados diagnósticos aceptables. Las decisiones que respaldan el uso prudente dependen del tipo de paciente, el tipo de examen, los antecedentes del paciente, la facilidad o dificultad para obtener información de utilidad diagnóstica y el posible calentamiento localizado del paciente debido a la temperatura de la superficie del transductor.

El diseño del sistema garantiza que la temperatura en la superficie del transductor no superará los límites establecidos en la norma IEC 60601-2-37: Requisitos particulares para la seguridad de los equipos médicos de diagnóstico y monitorización por ultrasonido. Consulte “Aumento de temperatura en la superficie de los transductores” en la página 10-9. Si se produce un fallo en el dispositivo, existen controles que limitan la potencia del transductor. Esto se consigue con un diseño eléctrico que limita la corriente y la tensión de alimentación del transductor.

El ecografista puede utilizar los controles del sistema para ajustar la calidad de la imagen y limitar la señal saliente de ultrasonidos. Los controles del sistema están divididos en tres categorías, en relación con la señal de salida: los que afectan directamente a la señal saliente, los que afectan indirectamente a la señal saliente y los de receptor.
Controles directos

El sistema no supera una intensidad media temporal apical espacial (ISPTA) de 720 mW/cm² en todos los modos de imagen. (Tanto en el examen oftalmico como en el orbital, la emisión acústica se limita a los valores siguientes: la IPSTA no debe superar 50 mW/cm²; el IT no debe superar 1,0 y el IM no debe superar 0,23). En algunos modos de imagen, determinados transductores pueden registrar valores del índice mecánico (IM) y el índice térmico (IT) superiores a 1,0. Es posible controlar los valores de IM y IT con el fin de ajustar los controles y reducir dichos valores. Consulte “Pautas para reducir el índice mecánico y el índice térmico” en la página 10-3. Además, una manera de cumplir con el criterio ALARA es ajustar los valores de IM o IT en un nivel de índice bajo y luego modificar este hasta obtener una imagen o modo Doppler satisfactorios. Para obtener más información sobre el índice mecánico y el índice térmico, consulte Medical Ultrasound Safety, AIUM (con cada sistema se incluye una copia de este documento) y el anexo conforme con la norma IEC 60601-2-37, “Guidance on the interpretation of TI and MI to be used to inform the operator” (Pautas de interpretación del índice térmico y el índice mecánico para informar al usuario).

Visualización de salida

Documentos de consulta relacionados

Medical Ultrasound Safety American Institute of Ultrasound in Medicine (AIUM), 2014. (Con cada sistema se incluye una copia de este documento).

Aumento de temperatura en la superficie de los transductores

En la tabla 10-4 y la tabla 10-5 aparece el aumento de la temperatura medido en la superficie con respecto a la temperatura ambiente (23 °C ± 3 °C) de los transductores utilizados en el sistema de ecografía. Las temperaturas se midieron según la norma IEC 60601-2-37, para lo cual se han ajustado los controles y los parámetros para producir las temperaturas máximas.

Medición de la emisión acústica

Desde la utilización de la ecografía diagnóstica, varias instituciones científicas y médicas han estado estudiando los posibles efectos biológicos en seres humanos de la exposición a este tipo de energía. En octubre de 1987, el American Institute of Ultrasound in Medicine (AIUM) ratificó un informe de su Comité sobre Efectos Biológicos (Bioeffects Considerations for the Safety of Diagnostic Ultrasound, J Ultrasound
La emisión acústica para este sistema de ecografía se ha medido y calculado de acuerdo con las recomendaciones de las normas Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment (NEMA UD2-2004) e IEC 60601-2-37: 2015. Requisitos particulares para la seguridad básica y funcionamiento esencial de los equipos de diagnóstico y monitorización por ultrasonidos.

Tablas de emisión acústica

Se ha actualizado el formato de las tablas de emisión acústica.

<table>
<thead>
<tr>
<th>Modelo de transductor: C8x</th>
<th>Modo de funcionamiento: 2D</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo de transductor: C8x</td>
<td>Modo de funcionamiento: M mode</td>
<td>224</td>
</tr>
<tr>
<td>Modelo de transductor: C8x</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>225</td>
</tr>
<tr>
<td>Modelo de transductor: C8x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>226</td>
</tr>
<tr>
<td>Modelo de transductor: C11x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>227</td>
</tr>
<tr>
<td>Modelo de transductor: C35x</td>
<td>Modo de funcionamiento: 2D</td>
<td>228</td>
</tr>
<tr>
<td>Modelo de transductor: C35x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>229</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi (uso oftálmico)</td>
<td>Modo de funcionamiento: 2D</td>
<td>230</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi (uso oftálmico)</td>
<td>Modo de funcionamiento: M mode</td>
<td>231</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi (uso oftálmico)</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>232</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi (uso oftálmico)</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>233</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi</td>
<td>Modo de funcionamiento: 2D</td>
<td>234</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>235</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>236</td>
</tr>
<tr>
<td>Modelo de transductor: HFL38xi</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>237</td>
</tr>
<tr>
<td>Modelo de transductor: HFL50x</td>
<td>Modo de funcionamiento: 2D</td>
<td>238</td>
</tr>
<tr>
<td>Modelo de transductor: HFL50x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>239</td>
</tr>
<tr>
<td>Modelo de transductor: HFL50x</td>
<td>Modo de funcionamiento: Color</td>
<td>240</td>
</tr>
<tr>
<td>Modelo de transductor: HFL50x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>241</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x (uso oftálmico)</td>
<td>Modo de funcionamiento: 2D</td>
<td>242</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x (uso oftálmico)</td>
<td>Modo de funcionamiento: M mode</td>
<td>243</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x (uso oftálmico)</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>244</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x (uso oftálmico)</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>245</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x</td>
<td>Modo de funcionamiento: 2D</td>
<td>246</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>247</td>
</tr>
<tr>
<td>Modelo de transductor: HSL25x</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>248</td>
</tr>
<tr>
<td>Modelo de transductor: ICTx</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>249</td>
</tr>
<tr>
<td>Modelo de transductor: L25x (uso oftálmico)</td>
<td>Modo de funcionamiento: 2D</td>
<td>250</td>
</tr>
<tr>
<td>Modelo de transductor: L25x (uso oftálmico)</td>
<td>Modo de funcionamiento: M mode</td>
<td>251</td>
</tr>
<tr>
<td>Modelo de transductor: L25x (uso oftálmico)</td>
<td>Modo de funcionamiento: Color/DPC</td>
<td>252</td>
</tr>
<tr>
<td>Modelo de transductor: L25x (uso oftálmico)</td>
<td>Modo de funcionamiento: Doppler OP</td>
<td>253</td>
</tr>
<tr>
<td>Modelo de transductor: L25x</td>
<td>Modo de funcionamiento: 2D</td>
<td>254</td>
</tr>
</tbody>
</table>
Tablas de emisión acústica

<table>
<thead>
<tr>
<th>Modelo de transductor</th>
<th>Modo de funcionamiento</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>L25x</td>
<td>Color/DPC</td>
<td>255</td>
</tr>
<tr>
<td>L25x</td>
<td>Doppler OP</td>
<td>256</td>
</tr>
<tr>
<td>L38xi</td>
<td>2D</td>
<td>257</td>
</tr>
<tr>
<td>L38xi</td>
<td>M mode</td>
<td>258</td>
</tr>
<tr>
<td>L38xi</td>
<td>Color/DPC</td>
<td>259</td>
</tr>
<tr>
<td>L38xi</td>
<td>Doppler OP</td>
<td>260</td>
</tr>
<tr>
<td>P10x</td>
<td>Color</td>
<td>261</td>
</tr>
<tr>
<td>P10x</td>
<td>Doppler OC</td>
<td>262</td>
</tr>
<tr>
<td>P10x</td>
<td>Doppler OP</td>
<td>263</td>
</tr>
<tr>
<td>rC60xi</td>
<td>2D</td>
<td>264</td>
</tr>
<tr>
<td>rC60xi</td>
<td>M mode</td>
<td>265</td>
</tr>
<tr>
<td>rC60xi</td>
<td>Color/DPC</td>
<td>266</td>
</tr>
<tr>
<td>rC60xi</td>
<td>Doppler OP</td>
<td>267</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>2D</td>
<td>268</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>M mode</td>
<td>269</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>Color/DPC</td>
<td>270</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>Doppler OP</td>
<td>271</td>
</tr>
<tr>
<td>rP19x</td>
<td>2D</td>
<td>272</td>
</tr>
<tr>
<td>rP19x</td>
<td>M mode</td>
<td>273</td>
</tr>
<tr>
<td>rP19x</td>
<td>Color/DPC</td>
<td>274</td>
</tr>
<tr>
<td>rP19x</td>
<td>Doppler OC</td>
<td>275</td>
</tr>
<tr>
<td>rP19x</td>
<td>Doppler OP</td>
<td>276</td>
</tr>
<tr>
<td>TEExi</td>
<td>Doppler OC</td>
<td>277</td>
</tr>
<tr>
<td>TEExi</td>
<td>Doppler OP</td>
<td>278</td>
</tr>
</tbody>
</table>

Tabla de emisión acústica incluyendo modelos de transductores y modos de funcionamiento.
Tabla 10: Modelo de transductor: C8x Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superfi-cie</td>
<td>Bajo la superfi-cie</td>
<td>En la superfi-cie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{r,\alpha}) a (z_{IM}) (MPa)</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>5,53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>9524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td>18,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) a (z_{pii,\alpha}) (W/cm(^2))</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) a (z_{pii,\alpha}) o (z_{sii,\alpha}) (mW/cm(^2))</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) a (z_{pii}) o (z_{sii}) (mW/cm(^2))</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) a (z_{pii}) (MPa)</td>
<td>3,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>2,5–3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Desactivo-dado</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>2,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td>Tipo de examen</td>
<td>Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimización</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profundidad (cm)</td>
<td>4,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 12: Modelo de transductor: C8x Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{c,\alpha}$ a z_{IM} (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otra información

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo</td>
<td>CVD</td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/1,5–1,9</td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Alta/cualquiera</td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Estrecha/cualquiera</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,5</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>23,1</td>
<td></td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>#</td>
<td>23,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>4,80</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control de funcionamiento				
Tipo de examen	Pro			
Tamaño del volumen de muestra (mm)	1			
Posición del volumen de muestra	Zona 4	Zona 4		
FRI (Hz)	1008	1008		

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 14: Modelo de transductor: C11x Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>$p_{r, \alpha} \times z_{IM}$ (MPa)</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>24,6</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>24,6</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>1,7</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otra información</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>$p_{r} \times z_{pii}$ (MPa)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha} \times z_{pii, \alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha} \times z_{pii, \alpha}$ o $z_{sii, \alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{spta} \times z_{pii}$ o z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controles de funcionamiento</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de examen</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 1</td>
<td>Zona 0</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>10417</td>
<td>6250</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1 \times 1}$ (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1021</td>
<td>7,98</td>
<td>1</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>250</td>
<td>8,6</td>
<td>16,5</td>
</tr>
<tr>
<td>$I_{pa,a} a z_{pii,\alpha}$ (W/cm2)</td>
<td>250</td>
<td>8,6</td>
<td>16,5</td>
</tr>
<tr>
<td>$I_{spa,a} a z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm2)</td>
<td>2,61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa} a z_{pii} o z_{sii}$ (mW/cm2)</td>
<td>2,61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otra información</th>
<th>Tipo de examen</th>
<th>Optimización</th>
<th>Profundidad (cm)</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Msk</td>
<td>Res</td>
<td>8,3</td>
<td>N/D</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<p>| Tabla 16: Modelo de transductor: C35x Modo de funcionamiento: Doppler OP |
|---------------------------------|------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,6</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>71,1</td>
<td>47,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sppta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{sppta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Columna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 5</td>
<td></td>
<td>Zona 0</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>6250</td>
<td>15625</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 17: Modelo de transductor: HFL38xi (uso oftálmico) Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiqueta de índice</td>
<td>IM</td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,007</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,43</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P (mW)</td>
<td>—</td>
<td>0,77</td>
<td>0,77</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,21</td>
<td>0,21</td>
<td>—</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>2,1</td>
<td>2,1</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,59</td>
<td>6,75</td>
<td>6,75</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>11339</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>19,7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>11,4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>1,3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control de funcionamiento</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 18: Modelo de transductor: HFL38xi (uso oftálmico) Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,003</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td>10,3</td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{pii} o z_{sii}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>$p_{r} a z_{pii}$ (MPa)</td>
<td></td>
<td></td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para esta condición de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 19: Modelo de transductor: HFL38xi (uso oftálmico) Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superfi-</td>
<td>Bajo la supe-</td>
<td>En la supe-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cie</td>
<td>rfi- cie</td>
<td>rfi- cie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>(p_{r,\alpha}) a (z_{IM}) (MPa)</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>1,11</td>
<td>1,11</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>0,75</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(z_B) (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td>0,9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td></td>
<td>0,9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td>4537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td>13,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) a (z_{pii,\alpha}) (W/cm²)</td>
<td></td>
<td>5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) a (z_{pii,\alpha}) o (z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) a (z_{pii}) o (z_{sii}) (mW/cm²)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) a (z_{pii}) (MPa)</td>
<td></td>
<td>0,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/1,5</td>
<td>Pen/4,9</td>
<td>Pen/4,9</td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Alto/7813</td>
<td>Alto/6944</td>
<td>Alto/6944</td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Inferior/pequeño</td>
<td>Def/estrecho</td>
<td>Def/estrecho</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,18</td>
<td>0,09</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,09</td>
<td>0,06</td>
<td>0,09</td>
</tr>
<tr>
<td>p_{α} a z_{IM} (MPa)</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,64</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,33</td>
<td>5,33</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha}$ a $z_{pii,\alpha}$ o $I_{spi,\alpha}$ (mW/cm²)</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} a z_{pii} o I_{spi} (mW/cm²)</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{a} a z_{pii} (MPa)</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 1</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1302</td>
<td>10417</td>
<td>10417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.

Tabla 20: Modelo de transductor: HFL38xi (uso oftálmico) Modo de funcionamiento: Doppler OP
<table>
<thead>
<tr>
<th>Tabla 21: Modelo de transductor: HFL38xi Modo de funcionamiento: 2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiqueta de índice</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
</tr>
<tr>
<td>P (mW)</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
</tr>
<tr>
<td>Otra información</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
</tr>
<tr>
<td>n_{pps}</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
</tr>
<tr>
<td>Tipo de examen</td>
</tr>
<tr>
<td>Optimización</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
</tr>
<tr>
<td>MB</td>
</tr>
<tr>
<td>Visión de aguja</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 22: Modelo de transductor: HFL38xi Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,14</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>4,35</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Nrv</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Optimización</td>
<td>Pen</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>4,0</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
| Tabla 23: Modelo de transductor: HFL38xi Modo de funcionamiento: Color/DPC |
|---------------------------------|-------------|-------------|-------------|
| Etiqueta de índice | IM | TIS | TIB | TIC |
| | En la superficie | Bajo la superficie | En la superficie | Bajo la superficie | En la superficie |
| Valor de índice máximo | 1,3 | (a) | (a) | (b) |
| Valor de componente del índice | # | # | # | # |
| Parámetros acústicos | | | | |
| $p_{r,\alpha}$ a z_{IM} (MPa) | 3,05 | # | # | # |
| P (mW) | | # | # | |
| P_{1x1} (mW) | | | # | |
| z_{s} (cm) | | — | | |
| z_{b} (cm) | | | | — |
| z_{IM} (cm) | | | 1,2 | |
| $z_{pii,\alpha}$ (cm) | | | | 1,2 |
| f_{awf} (MHz) | | 5,36 | # | # | # |
| Otra información | | | | |
| p_{rr} (Hz) | | | 2223 | |
| s_{rr} (Hz) | | | | 3,3 |
| n_{pps} | | | | 14 |
| $I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²) | 494 | | | |
| $I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²) | 27,4 | | | |
| I_{spta} a z_{pii} o z_{sii} (mW/cm²) | 40,1 | | | |
| p_{r} a z_{pii} (MPa) | | | | 3,81 |
| Controles de funcionamiento | | | | |
| Tipo de examen | SmP | | | |
| Modo | CVD | | | |
| Optimización 2D/profundidad (cm) | Res/3,3 | | | |
| Optimización del color/FRI (Hz) | | | Bajo/401 | |
| Posición/tamaño del cuadro Color | | | Def/def | |

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 24: Modelo de transductor: HFL38xi Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,1</td>
<td>0,8</td>
<td>1,1</td>
<td>2,2</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td></td>
<td></td>
<td>2,69</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>1,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm2)</td>
<td></td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm2)</td>
<td></td>
<td>102,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td>210,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td>3,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Nrv</td>
<td>Art</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 3</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1008</td>
<td>3125</td>
<td>3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

Los datos no son aplicables a este transductor/modo.
Tabla 25: Modelo de transductor: HFL50x Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS En la superficie</th>
<th>Bajo la superficie</th>
<th>TIB En la superficie</th>
<th>Bajo la superficie</th>
<th>TIC En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>2733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr (Hz)</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm2)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm2)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 26: Modelo de transductor: HFL50x Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS En la superficie</th>
<th>Bajo la superficie</th>
<th>TIB En la superficie</th>
<th>Bajo la superficie</th>
<th>TIC En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>3,14</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp}{ta,a}$ a $z{pii,a}$ o $z_{sii,a}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp}{ta}$ a $z{pii}$ o z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_l a z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Cualquiera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 27: Modelo de transductor: HFL50x Modo de funcionamiento: Color

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>8233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spTa,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spTa} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

Tipo de examen	Cualquiera
Modo	Cualquiera
Optimización/profundidad (cm)	Bajo/3,3
FRI (Hz)	Cualquiera

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Tabla 28: Modelo de transductor: HFL50x Modo de funcionamiento: Doppler OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiqueta de índice</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
</tr>
<tr>
<td>P (mW)</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
</tr>
<tr>
<td>z_s (cm)</td>
</tr>
<tr>
<td>z_b (cm)</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
</tr>
<tr>
<td>$z_{p_{ii},a}$ (cm)</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
</tr>
<tr>
<td>Otra información</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
</tr>
<tr>
<td>n_{pps}</td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{p_{ii},a}$ (W/cm²)</td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{p_{ii},a}$ o $z_{sil,a}$ (mW/cm²)</td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{ii}}$ o z_{sil} (mW/cm²)</td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
</tr>
<tr>
<td>Tipo de examen</td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
</tr>
<tr>
<td>FRI (Hz)</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraaniales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 29: Modelo de transductor: HSL25x (uso oftálmico) Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td></td>
<td></td>
<td>0,47</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>0,8</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>0,8</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,65</td>
<td>6,97</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td></td>
<td>12580</td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>12,3</td>
<td></td>
</tr>
<tr>
<td>$npps$</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>pr a z_{pii} (MPa)</td>
<td></td>
<td>0,58</td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

Tipo de examen	Oph	Oph	Oph
Optimización	Res	Pen	Pen
Profundidad (cm)	1,9	4,3	4,3
MB	Activado	Activado	Activado

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.

(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
Tabla 30: Modelo de transductor: HSL25x (uso oftálmico) Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
<td>0,020</td>
</tr>
<tr>
<td>parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a} \alpha a z_{IM}$ (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii,\alpha}}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p_{ii,\alpha}}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{p_{ii,\alpha}}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{ii}}$ (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr a $z_{p_{ii}}$ (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Def/def</td>
<td>Superior/corto-ancho</td>
<td>Superior/corto-ancho</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 32: Modelo de transductor: HSL25x (uso oftálmico) Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiqueta de índice</td>
<td>IM</td>
<td>IM</td>
<td>IM</td>
</tr>
<tr>
<td>IM</td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>IM</td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>IM</td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
</tbody>
</table>

Valor de índice máximo

<table>
<thead>
<tr>
<th></th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Valor de componente del índice

| IM | 0,12 | 0,08 | 0,12 | 0,21 |

Parámetros acústicos

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
</tr>
<tr>
<td>p_{r} a z_{p} (MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otra información

<table>
<thead>
<tr>
<th>Otra información</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{r} (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{p_i,\alpha}$ (W/cm²)</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sphta,\alpha} a z_{p_i,\alpha} o z_{sili,\alpha}$ (mW/cm²)</td>
<td>18,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sphta} a z_{p_i} o z_{sili}$ (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Controles de funcionamiento</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td>Zona 7</td>
</tr>
<tr>
<td>FR1 (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 33: Modelo de transductor: HSL25x Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) a (z_{IM}) (MPa)</td>
<td></td>
<td>2,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td>0,8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>6,11</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td>1061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td>13,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) a (z_{pii,\alpha}) (W/cm(^2))</td>
<td></td>
<td>478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{sppta,\alpha}) a (z_{pii,\alpha}) o (z_{sii,\alpha}) (mW/cm(^2))</td>
<td></td>
<td>12,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{sppta}) a (z_{pii}) o (z_{sii}) (mW/cm(^2))</td>
<td></td>
<td>16,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) a (z_{pii}) (MPa)</td>
<td></td>
<td>3,39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parámetros acústicos

\(p_{r,\alpha}\) a \(z_{IM}\) (MPa)	2,87
\(P\) (mW)	#
\(P_{1x1}\) (mW)	#
\(z_s\) (cm)	—
\(z_b\) (cm)	—
\(z_{IM}\) (cm)	0,8
\(z_{pii,\alpha}\) (cm)	0,8
\(f_{awf}\) (MHz)	6,11
\(prr\) (Hz)	1061
\(srr\) (Hz)	13,0
\(n_{pps}\)	1
\(l_{pa,\alpha}\) a \(z_{pii,\alpha}\) (W/cm\(^2\))	478
\(l_{sppta,\alpha}\) a \(z_{pii,\alpha}\) o \(z_{sii,\alpha}\) (mW/cm\(^2\))	12,2
\(l_{sppta}\) a \(z_{pii}\) o \(z_{sii}\) (mW/cm\(^2\))	16,4
\(p_{r}\) a \(z_{pii}\) (MPa)	3,39

Otra información

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>NrV/Msk/Ven/Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimización</td>
<td>Cualquiera</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,9–2,2</td>
</tr>
<tr>
<td>Mbe</td>
<td>Activado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
Tabla 34: Modelo de transductor: HSL25x Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>47,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>63,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Sup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Def/def</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>(p_{r,\alpha} a z_{IM}) (MPa)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>#</td>
<td>28,1</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>#</td>
<td>28,1</td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td>#</td>
<td>0,75</td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha} a z_{pii,\alpha}) (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{spta} a z_{pii} o z_{sii}) (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(p_{r} a z_{pii}) (MPa)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td>Tipo de examen</td>
<td>Nrv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamaño del volumen de muestra</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posición del volumen de muestra</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRI (Hz)</td>
<td>1953</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.

(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS En la superficie</th>
<th>Bajo la superficie</th>
<th>TIB En la superficie</th>
<th>Bajo la superficie</th>
<th>TIC En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td></td>
<td>1,2</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td></td>
<td>0,3</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>16,3</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>16,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,60</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>4,36</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 37: Modelo de transductor: L25x (uso oftálmico) Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>12580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>12,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td>13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td>0,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Activado</td>
<td>Activado</td>
<td>Activado</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 38: Modelo de transductor: L25x (uso oftálmico) Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th></th>
<th>IM</th>
<th>TIS En la superficie</th>
<th>Bajo la superficie</th>
<th>TIB En la superficie</th>
<th>Bajo la superficie</th>
<th>TIC En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
<td>0,020</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sili,\alpha}$ (mW/cm²)</td>
<td></td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sili} (mW/cm²)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 39: Modelo de transductor: L25x (uso oftálmico) Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de índice máximo</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06 (b)</td>
</tr>
<tr>
<td>Valores de componente del índice</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>0,7</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>$z_{pi\alpha}$ (cm)</td>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td></td>
<td>3096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>8,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pi\alpha}$ (W/cm2)</td>
<td></td>
<td>7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ a $z_{pi\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a $z_{pi\alpha}$ o z_{sii} (mW/cm2)</td>
<td></td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a $z_{pi\alpha}$ (MPa)</td>
<td></td>
<td>0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Def/def</td>
<td>Superior/corto-ancho</td>
<td>Superior/corto-ancho</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 40: Modelo de transductor: L25x (uso oftálmico) Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
<td>0,21</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,80</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{piii,\alpha}$ (W/cm2)</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ a $z_{piii,\alpha}$ o $z_{siii,\alpha}$ (mW/cm2)</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{piii} o z_{siii} (mW/cm2)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{piii} (MPa)</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 41: Modelo de transductor: L25x Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pii,\alpha}$ (W/cm2)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm2)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{pii} o z_{sii}$ (mW/cm2)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>Nrv/Msk/Ven/Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimización</td>
<td>Cualquiera</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>1,9–2,2</td>
</tr>
<tr>
<td>Mbe</td>
<td>Activado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 42: Modelo de transductor: L25x Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td>6,11</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ a $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 43: Modelo de transductor: L25x Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Parámetros acústicos

<table>
<thead>
<tr>
<th>Parámetro acústico</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>0,75</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Otra información

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} a $z_{pii} o z_{sii}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vas/Ven/Nrv</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamaño del volumen de muestra (mm)</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Posición del volumen de muestra</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 7</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRI (Hz)</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 44: Modelo de transductor: L38xi Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha} \cdot z_{IM}$ (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} \cdot z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td>605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sppta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>10,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{sppta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td>13,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td>3,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>N/D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visión de aguja</td>
<td>Activado</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 45: Modelo de transductor: L38xi Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,2</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
</tr>
<tr>
<td>$p_{r,a} a z_{IM}$ (MPa)</td>
<td>3,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>37,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>37,1</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{awf} (MHz)</td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a} a z_{pii,a}$ (W/cm²)</td>
<td>776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a} a z_{pii,a} o z_{sii,a}$ (mW/cm²)</td>
<td>181,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} a z_{pii} o z_{sii}$ (mW/cm²)</td>
<td>280,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} a z_{pii}$ (MPa)</td>
<td>4,32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otra información				
Tipo de examen	Art	Art		
Optimización	Gen	Pen		
Profundidad (cm)	4,7	7,3		

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>64,7</td>
<td>64,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>49,0</td>
<td>49,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>4,83</td>
<td>4,83</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_{r} (Hz)</td>
<td>2,190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>35,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>47,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Art</td>
<td>Ven</td>
<td>Ven</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Pen/2,0</td>
<td>Pen/3,1</td>
<td>Pen/3,1</td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/393</td>
<td>Bajo/2315</td>
<td>Bajo/2315</td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Def/def</td>
<td>Inferior/corto-estrecho</td>
<td>Inferior/corto-estrecho</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Tabla 47: Modelo de transductor: L38xi Modo de funcionamiento: Doppler OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros acústicos</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
</tr>
<tr>
<td>p_{r,\alpha} a z_{IM} (MPa)</td>
</tr>
<tr>
<td>P (mW)</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
</tr>
<tr>
<td>z_{pii,\alpha} (cm)</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
</tr>
<tr>
<td>Otra información</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
</tr>
<tr>
<td>n_{pps}</td>
</tr>
<tr>
<td>I_{pa,\alpha} a z_{pii,\alpha} (W/cm^2)</td>
</tr>
<tr>
<td>I_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha} (mW/cm^2)</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm^2)</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
</tr>
<tr>
<td>Tipo de examen</td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
</tr>
<tr>
<td>FRI (Hz)</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcrañales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 48: Modelo de transductor: P10x Modo de funcionamiento: Color

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1,1</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td>p<sub>r,α</sub> a z<sub>IM</sub> (MPa)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>42,2</td>
</tr>
<tr>
<td></td>
<td>P<sub>1x1</sub> (mW)</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>z<sub>s</sub> (cm)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z<sub>b</sub> (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z<sub>IM</sub> (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z<sub>pii,α</sub> (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f<sub>awf</sub> (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td>pr<sub>r</sub> (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n<sub>pps</sub></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I<sub>pa,α</sub> a z<sub>pii,α</sub> (W/cm<sup>2</sup>)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I<sub>spta,α</sub> a z<sub>pii,α</sub> o z<sub>sii,α</sub> (mW/cm<sup>2</sup>)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I<sub>spta</sub> a z<sub>pii</sub> o z<sub>sii</sub> (mW/cm<sup>2</sup>)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p<sub>r</sub> a z<sub>pii</sub> (MPa)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td>Tipo de examen</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modo</td>
<td>CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimización 2D/profundidad (cm)/anchura del sector</td>
<td>Pen/8,9/estrecho</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/2033</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posición/tamaño del cuadro Color</td>
<td>Superior/corto-ancho</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 49: Modelo de transductor: P10x Modo de funcionamiento: Doppler OC

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS En la superficie</th>
<th>Bajo la superficie</th>
<th>TIB En la superficie</th>
<th>Bajo la superficie</th>
<th>TIC En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,8</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>34,8</td>
<td>25,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>34,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p+i,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>4,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p+i,\alpha}$ (W/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp+ta,\alpha}$ a $z_{p+i,\alpha}$ o $z_{s+ii,\alpha}$ (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{sp+ta} a z_{p+i} o z_{s+ii} (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{p+i} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crd</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zona 3</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcranéales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 50: Modelo de transductor: P10x Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,90</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} a z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>400,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} a z_{pii}$ o z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td>729,9</td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>2,54</td>
<td></td>
</tr>
<tr>
<td>Controles de funcionalidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Crd</td>
<td>Crd</td>
<td>Abd</td>
<td>Crd</td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 2</td>
<td>Zona 6</td>
<td>Zona 1</td>
<td>Zona 0</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1562</td>
<td>1008</td>
<td>1953</td>
<td>15625</td>
</tr>
<tr>
<td>TDI</td>
<td>Desactivado</td>
<td>Activado</td>
<td>Desactivado</td>
<td>Desactivado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcranéales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia). — Los datos no son aplicables a este transductor/modo.
Tabla 51: Modelo de transductor: rC60xi Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td></td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>2,31</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_1 x 1$ (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_a (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3584</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>28,0</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm2)</td>
<td>356</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm2)</td>
<td>24,1</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta} a z_{pii} o z_{sii}$ (mW/cm2)</td>
<td>44,9</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,29</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>Abd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimización</td>
<td>Res</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>11</td>
</tr>
<tr>
<td>MB (multihaz)</td>
<td>Desactivado</td>
</tr>
<tr>
<td>THI</td>
<td>Activado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 52: Modelo de transductor: rC60xi Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>1,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>0,36</td>
<td>1,00</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>2,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>69,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>25,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,66</td>
<td>#</td>
<td>2,89</td>
<td>#</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>144,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>328,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Abd</td>
<td></td>
<td>Msk</td>
<td></td>
</tr>
<tr>
<td>Optimización</td>
<td>Pen</td>
<td></td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>6,6</td>
<td></td>
<td>9,2</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Desactivado</td>
<td></td>
<td>Desactivado</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 53: Modelo de transductor: rC60xi Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td>2,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,c}$ a z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185,8</td>
<td>185,8</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107,5</td>
<td>107,5</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{II,\alpha}}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,22</td>
<td>2,21</td>
<td>2,21</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>9,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p_{II,\alpha}}$ (W/cm2)</td>
<td></td>
<td>342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp_{ta,\alpha}}$ a $z_{p_{II,\alpha}}$ o $z_{s_{III,\alpha}}$ (mW/cm2)</td>
<td></td>
<td>8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{sp_{ta}}$ a $z_{p_{II}}$ o $z_{s_{III}}$ (mW/cm2)</td>
<td></td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{II}}$ (MPa)</td>
<td></td>
<td>3,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)/THI</td>
<td>Gen/11 / activado</td>
<td>Gen/4,7 / desactivado</td>
<td>Gen/4,7 / desactivado</td>
<td></td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/342</td>
<td>Alto/3125</td>
<td>Alto/3125</td>
<td></td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Inferior/alto-estrecho</td>
<td>Inferior/alto-estrecho</td>
<td>Inferior/alto-estrecho</td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento: el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 54: Modelo de transductor: rC60xi Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>(TIS) En la superficie</th>
<th>(TIS) Bajo la superficie</th>
<th>(TIB) En la superficie</th>
<th>(TIB) Bajo la superficie</th>
<th>(TIC) En la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) a (z_{IM}) (MPa)</td>
<td>1,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{1\times1}) (mW)</td>
<td></td>
<td>67,5</td>
<td>74,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td></td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{piii,\alpha}) (cm)</td>
<td></td>
<td></td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(p_{r}) (Hz)</td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) a (z_{piii,\alpha}) (W/cm²)</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) a (z_{piii,\alpha}) o (z_{sii,\alpha}) (mW/cm²)</td>
<td>399,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) a (z_{piii}) o (z_{sii}) (mW/cm²)</td>
<td>793,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) a (z_{piii}) (MPa)</td>
<td>2,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 3</td>
<td>Zona 6</td>
<td>Zona 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1302</td>
<td>2604</td>
<td>2604</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcrañales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
Tabla 55: Modelo de transductor: rP19x (uso orbital) Modo de funcionamiento: 2D

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>2,9</td>
<td>2,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
<td>1,90</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>6413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>15,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>4,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Desactivado</td>
<td>Desactivado</td>
<td>Desactivado</td>
<td>Desactivado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
Tabla 56: Modelo de transductor: rP19x (uso orbital) Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,009</td>
<td>0,020</td>
<td>0,021</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>0,006</td>
<td>0,009</td>
<td>0,020</td>
</tr>
<tr>
<td>Parámetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,a} \cdot a_{z_{IM}}) (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>1,34</td>
<td>1,34</td>
<td>1,34</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>0,67</td>
<td>0,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td></td>
<td>3,15</td>
<td></td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>(z_{pii,a}) (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>2,06</td>
<td>1,83</td>
<td>1,83</td>
<td>1,83</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(l_{pa,a} \cdot a_{z_{pii,a}}) (W/cm²)</td>
<td>4,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,a} \cdot a_{z_{pii,a}} \cdot o_{z_{sii,a}}) (mW/cm²)</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta} \cdot a_{z_{pii}} \cdot o_{z_{sii}}) (mW/cm²)</td>
<td>2,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r} \cdot a_{z_{pii}}) (MPa)</td>
<td></td>
<td></td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimización</td>
<td>Res</td>
<td>Gen</td>
<td>Gen</td>
<td>Gen</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>4,7</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>15,47</td>
<td>15,47</td>
<td>15,50</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>9,50</td>
<td>9,50</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>5443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)</td>
<td>Gen/4,7</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td>Bajo/1157</td>
<td>Bajo/3125</td>
<td>Bajo/3125</td>
<td>Bajo/3125</td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td>Def/def</td>
<td>Superior/ corto-ancho</td>
<td>Superior/ corto-ancho</td>
<td>Superior/ corto-ancho</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcranéales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 58: Modelo de transductor: rP19x (uso orbital) Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>0.18</td>
<td>0.27</td>
<td>0.59</td>
<td>0.57</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>0.19</td>
<td>0.27</td>
<td>0.18</td>
<td>0.59</td>
</tr>
<tr>
<td>p_r, α a z_{IM} (MPa)</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>37.4</td>
<td>35.3</td>
<td>37.4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>17.5</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3.35</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2.23</td>
<td>2.23</td>
<td>2.23</td>
</tr>
<tr>
<td>$p_ r$ a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

Parámetros acústicos

<table>
<thead>
<tr>
<th>Otra información</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l_{pa, \alpha}$ a $z_{pii, \alpha}$ (W/cm²)</td>
<td>2.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa, \alpha}$ a $z_{pii, \alpha}$ o $z_{sii, \alpha}$ (mW/cm²)</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>69.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>Orb</th>
<th>Orb</th>
<th>Orb</th>
<th>Orb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 6</td>
<td>Zona 7</td>
<td>Zona 5</td>
<td>Zona 7</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>Etiqueta de índice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM</td>
</tr>
<tr>
<td></td>
<td>TIS</td>
</tr>
<tr>
<td></td>
<td>TIB</td>
</tr>
<tr>
<td></td>
<td>TIC</td>
</tr>
<tr>
<td></td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,0</td>
</tr>
<tr>
<td>p_r, α a z_{IM} (MPa)</td>
<td>2,1</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>96,1</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,8</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
</tr>
</tbody>
</table>

Otra información	prr (Hz)	6186
	srr (Hz)	48,3
	n_{pps}	1
	$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)	184
	$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)	25,4
	I_{spta} a z_{pii} o z_{sii} (mW/cm²)	38,6
	p_r a z_{pii} (MPa)	2,92

Controles de funcionamiento	Tipo de examen	Abd	Crd	Crd	Crd
	Optimización	Gen	Res	Res	Pen
	Profundidad (cm)	10	10	10	4,7
	MB/THI	Desactivado/des activado	Desactivado/activado	Desactivado/activado	Desactivado/activado
	Anchura del sector	N/D	Estrecho	Estrecho	N/D

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 60: Modelo de transductor: rP19x Modo de funcionamiento: M mode

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>#</td>
<td>#</td>
<td>0,2</td>
<td>1,7</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>55,0</td>
<td>62,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,8</td>
<td>4,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>#</td>
<td>1,81</td>
<td>1,77</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controles de funcionamiento</th>
<th>Tipo de examen</th>
<th>Abd</th>
<th>Abd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimización</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>7,5</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>THI</td>
<td>Desactivado</td>
<td>Activado</td>
<td>Activado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 61: Modelo de transductor: rP19x Modo de funcionamiento: Color/DPC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superficie</td>
<td>Bajo la superficie</td>
<td>En la superficie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td></td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{c,\alpha}$ a z_{IM} (MPa)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>128,0</td>
<td>128,0</td>
<td>170,5</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>1,99</td>
<td>2,14</td>
<td>2,14</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>7,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td>2,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td></td>
<td>Abd</td>
<td>TCD</td>
<td>TCD</td>
</tr>
<tr>
<td>Modo/THI</td>
<td></td>
<td>CVD/desactivado</td>
<td>CVD/desactivado</td>
<td>CVD/desactivado</td>
</tr>
<tr>
<td>Optimización 2D/profundidad (cm)/anchura del sector</td>
<td></td>
<td>Gen/10/N/A</td>
<td>Pen/7,5/N/A</td>
<td>Pen/7,5/N/A</td>
</tr>
<tr>
<td>Optimización del color/FRI (Hz)</td>
<td></td>
<td>Bajo/300</td>
<td>Bajo/3125</td>
<td>Bajo/3125</td>
</tr>
<tr>
<td>Posición/tamaño del cuadro Color</td>
<td></td>
<td>Def/def</td>
<td>Def/estrecho</td>
<td>Def/estrecho</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 62: Modelo de transductor: rP19x Modo de funcionamiento: Doppler OC

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>1,2</td>
<td>1,1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>125,4</td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>125,4</td>
<td>125,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otra información</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controles de funcionamiento</th>
<th>Tipo de examen</th>
<th>Posición del volumen de muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crd</td>
<td>Zona 0</td>
<td>Zona 0</td>
</tr>
<tr>
<td>Crd</td>
<td>Zona 0</td>
<td>Zona 0</td>
</tr>
<tr>
<td>Crd</td>
<td>Zona 0</td>
<td>Zona 0</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 63: Modelo de transductor: rP19x Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En la superfcie</td>
<td>Bajo la superfcie</td>
<td>En la superfcie</td>
</tr>
<tr>
<td>Valor de índice máximo</td>
<td>1,3</td>
<td>1,8</td>
<td>4,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td>1,3</td>
<td>1,8</td>
<td>1,2</td>
<td>4,0</td>
</tr>
<tr>
<td>$p_{r,a} \times z_{IM} (MPa)$</td>
<td>1,94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P (mW)$</td>
<td></td>
<td>253,7</td>
<td>240,2</td>
<td>251,1</td>
</tr>
<tr>
<td>$P_{1x1} (mW)$</td>
<td></td>
<td>118,6</td>
<td>116,0</td>
<td></td>
</tr>
<tr>
<td>$z_s (cm)$</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>$z_b (cm)$</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>$z_{IM} (cm)$</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a} (cm)$</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_{awf} (MHz)$</td>
<td>2,14</td>
<td>2,23</td>
<td>2,23</td>
<td>2,10</td>
</tr>
<tr>
<td>$ppr (Hz)$</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$srr (Hz)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a} \times z_{pii,a} (W/cm^2)$</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a} \times z_{pii,a} \times z_{sii,a} (mW/cm^2)$</td>
<td>374,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa} \times z_{pii} \times z_{sii} (mW/cm^2)$</td>
<td>594,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r, a z_{pii} (MPa)$</td>
<td>2,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td>Zona 1</td>
<td>Zona 7</td>
<td>Zona 5</td>
<td>Zona 5</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1562</td>
<td>1562</td>
<td>39062</td>
<td>39062</td>
</tr>
<tr>
<td>TDI</td>
<td>Desactivado</td>
<td>Desactivado</td>
<td>Desactivado</td>
<td>Desactivado</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 64: Modelo de transductor: TEExi Modo de funcionamiento: Doppler OC

<table>
<thead>
<tr>
<th>Parámetros acústicos</th>
<th>IM</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,7</td>
</tr>
<tr>
<td>$p_{r,a} a z_{IM}$ (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>34,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>34,4</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
</tr>
<tr>
<td>Otra información</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a} a z_{p\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a} a z_{p\alpha} o z_{s\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{p\alpha} o z_{s\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} a z_{p\alpha}$ (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles de funcionamiento

<table>
<thead>
<tr>
<th>Tipo de examen</th>
<th>Volumen de muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crd</td>
<td>Zona 2</td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.

(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.

No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).

— Los datos no son aplicables a este transductor/modo.
Tabla 65: Modelo de transductor: TEExi Modo de funcionamiento: Doppler OP

<table>
<thead>
<tr>
<th>Etiqueta de índice</th>
<th>IM</th>
<th>TIS</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Valor de componente del índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,4</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>35,8</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>35,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td>2,57</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td>3,81</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles de funcionamiento</td>
<td></td>
<td></td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de examen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño del volumen de muestra (mm)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posición del volumen de muestra</td>
<td></td>
<td></td>
<td>Zona 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td></td>
<td></td>
<td>2604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Este índice no es necesario para este modo de funcionamiento; el valor es <1.
(b) Este transductor no está destinado a usos cefálicos neonatales o transcraneales.
No se han descrito datos para estas condiciones de funcionamiento, dado que no se ha indicado el valor global de índice máximo por el motivo mostrado. (Línea del valor global de índice máximo de referencia).
— Los datos no son aplicables a este transductor/modo.
Tabla 66: Términos utilizados en las tablas de emisión acústica

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Coeficiente de atenuación empleado para la disminución del valor. Igual a 0,3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Frecuencia operativa acústica.</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$</td>
<td>Intensidad promediada por impulsos atenuada.</td>
</tr>
<tr>
<td>I_{spta}</td>
<td>Intensidad promediada en el plano temporal máxima espacial.</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$</td>
<td>Intensidad promediada en el plano temporal máxima espacial atenuada.</td>
</tr>
<tr>
<td>IM</td>
<td>Índice mecánico.</td>
</tr>
<tr>
<td>P</td>
<td>Potencia de salida.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Potencia de salida en el cuadrado circunscrito.</td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>Presión acústica atenuada de rarefacción máxima.</td>
</tr>
<tr>
<td>p_r</td>
<td>Presión acústica de rarefacción máxima.</td>
</tr>
<tr>
<td>PII</td>
<td>Integral de intensidad de los impulsos.</td>
</tr>
<tr>
<td>$p_{ii,\alpha}$</td>
<td>Integral de intensidad de los impulsos atenuada.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Número de pulsos por línea de exploración ecográfica.</td>
</tr>
<tr>
<td>prr</td>
<td>Frecuencia de repetición de impulsos.</td>
</tr>
<tr>
<td>srr</td>
<td>Frecuencia de repetición de exploración.</td>
</tr>
<tr>
<td>IT</td>
<td>Índice térmico.</td>
</tr>
<tr>
<td>TIB</td>
<td>índice térmico de hueso.</td>
</tr>
<tr>
<td>TIC</td>
<td>Índice térmico óseo craneal.</td>
</tr>
<tr>
<td>TIS</td>
<td>Índice térmico del tejido blando.</td>
</tr>
<tr>
<td>z_b</td>
<td>Profundidad de TIB.</td>
</tr>
<tr>
<td>z_{Mi}</td>
<td>Profundidad del índice mecánico.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Profundidad de la integral de intensidad de los impulsos máxima.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Profundidad de la integral de intensidad de los impulsos máxima atenuada.</td>
</tr>
</tbody>
</table>
Glosario (SonoSite Edge II)

El término IMT se ha eliminado de la lista de abreviaturas del manual para el usuario de SonoSite Edge II; la revisión se realizará en la próxima actualización.

Tabla 66: Términos utilizados en las tablas de emisión acústica

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{sii}</td>
<td>Profundidad de la suma máxima de la integral de intensidad de los impulsos.</td>
</tr>
<tr>
<td>$z_{sii,\alpha}$</td>
<td>Profundidad de la suma máxima de integral de intensidad de los impulsos atenuada.</td>
</tr>
<tr>
<td>z_s</td>
<td>Profundidad de TIS.</td>
</tr>
</tbody>
</table>
Errata du guide d’utilisation du SonoSite Edge II et SonoSite SII

Introduction .. 282
Conventions du document ... 282
Obtenir de l’aide .. 282
Obtenir de l’aide (SonoSite Edge II) ... 283
Mise en route .. 283
Utilisations prévues .. 283
Configuration de l’échographe .. 283
 Paramètres de connectivité (SonoSite SII) .. 283
 Configuration de la connectivité (SonoSite Edge II) .. 283
 Paramètres État du réseau .. 284
Imagerie .. 284
 Modes d’imagerie et examens disponibles par sonde (SonoSite SII) ... 284
Mesures et calculs (SonoSite SII) ... 285
 Calculs généraux ... 285
Mesures de référence (SonoSite SII) .. 286
 Exactitude des mesures ... 286
 Publications relatives aux mesures et terminologie ... 286
Nettoyage et désinfection ... 287
Sécurité .. 287
 Sécurité clinique ... 287
 Compatibilité électromagnétique .. 288
 Transmission sans fil .. 290
 Dongle USB sans fil (Panda) .. 290
 Module de communication sans fil et sécurisée (Laird) .. 291
 Symboles d’étiquetage ... 303
 Caractéristiques ... 312
 Sondes prises en charge (SonoSite SII) .. 312
 Normes ... 313
 Normes de sécurité électromécanique ... 313
Puissance acoustique ... 314
 Principe ALARA ... 314
 Application du principe ALARA ... 314
 Commandes directes ... 315
 Affichage de la puissance acoustique .. 315
 Documents connexes .. 315
 Mesure de la puissance acoustique .. 316
 Termes utilisés dans les tableaux de puissance acoustique ... 374
Glossaire (SonoSite Edge II) .. 375
Introduction

Conventions du document

Ce document utilise les conventions suivantes :

- Un **AVERTISSEMENT** décrit les précautions à prendre pour éviter tout risque de blessure ou de décès.
- Une **mise en garde** décrit les précautions nécessaires pour protéger les produits.
- Une **remarque** fournit des informations supplémentaires.
- Les étapes associées à des numéros et à des lettres doivent être exécutées dans un ordre spécifique.
- Les listes à puces présentent des informations sous forme de liste mais n’impliquent aucun ordre d’exécution particulier.
- Les procédures ne comportant qu’une seule étape commencent par .

Pour obtenir une description des symboles d’étiquetage figurant sur le produit, consultez la section « Symboles d’étiquetage » du guide d’utilisation.

Obtenir de l’aide

Pour toute assistance technique, contactez FUJIFILM SonoSite :

- **Téléphone**
 - (États-Unis ou Canada) +1-877-657-8118
 - (hors États-Unis et Canada) +1-425-951-1330, ou contactez votre représentant local
- **Fax** +1-425-951-6700
- **E-mail** ffss-service@fujifilm.com
- **Web** www.sonosite.com

Centre de services en Europe
- Ligne principale : +31 20 751 2020
- Assistance en anglais : +44 14 6234 1151
- Assistance en français : +33 1 8288 0702
- Assistance en allemand : +49 69 8088 4030
- Assistance en italien : +39 02 9475 3655
- Assistance en espagnol : +34 91 123 8451

Centre de services en Asie +65 6380-5581

Imprimé aux États-Unis.
Obtenir de l’aide (SonoSite Edge II)

Les informations suivantes ont été corrigées dans le guide d’utilisation du SonoSite Edge II. La modification apparaîtra lors de la prochaine mise à jour.

E-mail ffss-service@fujifilm.com

Mise en route

Les informations suivantes étaient soit erronées soit absentes des guides d’utilisation du SonoSite Edge II et du SonoSite SII. Les modifications apparaîtront lors de la prochaine mise à jour.

Utilisations prévues

Applications d’imagerie prostatique

Les images permettent de déterminer la présence d’une anomalie éventuelle de la prostate et des structures anatomiques environnantes.

Applications d’imagerie superficielle

Vous pouvez déterminer la présence d’une hernie, d’une éventuelle anomalie des seins, de la thyroïde, des testicules, des ganglions lymphatiques, des structures musculo-squelettiques et ophtalmiques, des tissus mous, de la colonne vertébrale ainsi que des structures anatomiques environnantes. Vous pouvez utiliser l’échographe pour vous guider durant les procédures de biopsie et de drainage, de pose d’une ligne vasculaire et de pose de blocs nerveux périphériques.

Configuration de l’échographe

Paramètres de connectivité (SonoSite SII)

Toutes les références à PDAS doivent être remplacées par SiteLink dans le guide d’utilisation du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

Configuration de la connectivité (SonoSite Edge II)

La référence suivante a été mise à jour dans le guide d’utilisation du SonoSite Edge II. La modification apparaîtra lors de la prochaine mise à jour.
Pour activer la connexion sans fil

❖ Voir Configuration d’une connexion au réseau.

Paramètres État du réseau

Si l’écran Network Status (État du réseau) affiche un message indiquant un appareil sans fil défaillant, il se peut que votre mot de passe réseau soit arrivé à expiration. Vérifiez que votre mot de passe réseau a été mis à jour avant de connecter votre appareil sans fil.

Imagerie

La sonde C8x est compatible avec un guide-aiguilles sur les échographes SonoSite Edge II et SonoSite SII.

Modes d’imagerie et examens disponibles par sonde (SonoSite SII)

Les notes de bas de page suivantes ne figuraient pas dans le Tableau 4–5. Modes d’imagerie et examens disponibles par sonde du guide d’utilisation du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

a Abréviations des différents types d’examen : Abd = Abdomen ; Art = Artériel ; Bre = Sein ; Crd = Cardiaque ; Gyn = Gynécologique ; Msk = Musculo-squelettique ; Neo = Néonatal ; Nrv = Neurologique ; OB = Obstétrique ; Oph = Ophtalmique ; Pro = Prostate ; SmP = Parties molles ; Spn = Colonne vertébrale ; Sup = Superficiel ; Ven = Veineux.

b Les réglages d’optimisation pour la 2D sont Res, Gen et Pen.

c Les réglages d’optimisation pour CPD et Color sont Élevé, Moyen et Faible (sensibilité du flux). La plage de réglages PRF du mode Color varie en fonction du réglage choisi.
Mesures et calculs (SonoSite SII)

Calculs généraux

Calcul du volume

AVERTISSEMENTS

- Pour éviter les calculs erronés, vérifiez les informations sur le patient ainsi que le réglage de la date et de l’heure.
- Pour éviter toute erreur de diagnostic ou de traitement du patient, ouvrez un nouveau formulaire patient avant de démarrer un nouvel examen de patient et d’effectuer des calculs. Les données du patient précédent sont effacées si vous ouvrez un nouveau formulaire patient. En revanche, si vous n’effacez pas d’abord le formulaire, elles sont associées au patient actuel.

Le calcul du volume implique trois mesures de distance 2D : D1, D2 et D3. Une fois toutes les mesures sauvegardées, le résultat s’affiche à l’écran et dans le rapport patient.

Pour calculer le volume

Effectuez les opérations suivantes pour chaque image à mesurer :

1 Sur une image 2D figée, touchez **Calcs** (Calculs).

2 Effectuez les opérations suivantes pour chaque mesure à prendre :

 a Dans le menu des calculs, sélectionnez le nom de la mesure sous **Volume**.
 Si l’option **Volume** n’est pas disponible dans le cadre d’un examen Gyn, sélectionnez **Gyn**, puis **Volume**.

 b À l’aide du pavé tactile ou de l’écran tactile, positionnez les curseurs.

 c Touchez **Save Calc** (Enreg calc) pour enregistrer le calcul.
 Une coche s’affiche à côté de la mesure enregistrée.

3 Pour enregistrer une photo du calcul terminé, touchez 📷.

4 Touchez **Back** (Retour) pour sortir du calcul.
Mesures de référence (SonoSite SII)

Les informations suivantes ne figuraient pas dans le guide d’utilisation du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

Exactitude des mesures

Tableau 1 : Plage et exactitude des mesures et des calculs en M Mode

<table>
<thead>
<tr>
<th>Plage et exactitude des mesures en M Mode</th>
<th>Tolérance de l’échographe</th>
<th>Exactitude par</th>
<th>Méthode de test</th>
<th>Plage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>< ± 2 % plus 1 % de la grandeur réelle<sup>a</sup></td>
<td>Acquisition</td>
<td>Fantôme<sup>b</sup></td>
<td>0–26 cm</td>
</tr>
<tr>
<td>Temps</td>
<td>< ± 2 % plus 1 % de la grandeur réelle<sup>c</sup></td>
<td>Acquisition</td>
<td>Fantôme<sup>d</sup></td>
<td>0,01–10 s</td>
</tr>
<tr>
<td>Fréquence cardiaque</td>
<td>< ± 2 % plus (grandeur réelle<sup>c</sup> * fréquence cardiaque/100) %</td>
<td>Acquisition</td>
<td>Fantôme<sup>d</sup></td>
<td>5–923 bpm</td>
</tr>
</tbody>
</table>

^aLa distance en grandeur réelle nécessite la profondeur maximale d’image.

^bUtilisation d’un fantôme RMI modèle 413a avec une atténuation de 0,7 dB/cm MHz.

^cLe temps en grandeur réelle suppose que le temps total soit affiché sur l’image graphique qui défile.

^dUtilisation de matériel de test spécial FUJIFILM SonoSite.

Publications relatives aux mesures et terminologie

Références générales

Angle des hanches/ratio d:D

Pourcentage de réduction de surface

\[
\text{% de réduction de surface} = \left[1 - \frac{A2}{A1}\right] \times 100
\]

où :

- A1 = surface originale du vaisseau en cm²
- A2 = surface réduite du vaisseau en cm²
Pourcentage de réduction du diamètre

\[
\text{% de réduction du diamètre} = [1 – \frac{D2 (cm)}{D1 (cm)}] * 100
\]

où :

- \(D1\) = diamètre original du vaisseau en cm
- \(D2\) = diamètre réduit du vaisseau en cm

Nettoyage et désinfection

L’adresse du site web suivante a été corrigée dans les guides d’utilisation du SonoSite Edge II et du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

www.sonosite.com/products/transducers

La note de bas de page suivante a été mise à jour dans les tableaux de nettoyage et de désinfection.

Pour obtenir une liste plus complète des nettoyants et des désinfectants approuvés, consultez l’outil de sélection des produits à la page www.sonosite.com/support/cleaners-disinfectants.

Sécurité

Sécurité clinique

L’avertissement suivant a été mis à jour dans les guides d’utilisation du SonoSite Edge II et du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

AVERTISSEMENT

FUJIFILM SonoSite ne recommande pas l’utilisation d’appareils électromédicaux haute fréquence (HF) à proximité de ses systèmes. L’équipement FUJIFILM SonoSite n’a pas été validé pour une utilisation avec des appareils électromédicaux HF ou lors de telles procédures. L’utilisation d’appareils électromédicaux HF à proximité de ses systèmes peut conduire à un comportement anormal du système ou à son arrêt. Pour éviter tout risque de brûlure, n’utilisez pas la sonde avec un appareil chirurgical HF. La connexion de l’électrode neutre chirurgicale HF risque de provoquer des brûlures si elle est défectueuse.
Compatibilité électromagnétique

Mises en garde

- Le matériel électrique médical nécessite des précautions particulières en matière de compatibilité électromagnétique. Il doit être installé et utilisé conformément à ces instructions. Les équipements de communication RF portatifs (y compris les périphériques, comme les câbles d’antenne et les antennes externes) ne doivent pas être utilisés à moins de 30 cm de n’importe quel composant de l’échographe, y compris les câbles spécifiés par FUJIFILM SonoSite. Le matériel de communication radioélectrique (RF) portable ou mobile peut affecter l’échographe. Les performances de l’échographe peuvent être perturbées par des interférences électromagnétiques (IEM) provenant d’autres matériels ou sources. Ces perturbations peuvent se traduire par une dégradation ou une déformation des images, des mesures aberrantes, l’arrêt du matériel ou par d’autres dysfonctionnements. Si cela se produit, alors inspectez le site afin de déterminer la ou les origine(s) de la perturbation et prenez les mesures suivantes pour y remédier.

 1. Mettez le matériel avoisinant hors tension puis sous tension, de manière à identifier l’élément responsable de la perturbation.
 2. Déplacez ou réorientez le matériel responsable des interférences.
 3. Éloignez le matériel responsable des interférences de l’échographe.
 5. Retirez les dispositifs extrêmement sensibles aux interférences électromagnétiques.
 6. Diminuez la puissance des sources internes contrôlées par le site (comme les systèmes de radiomessagerie).
 7. Étiquetez les périphériques sensibles aux interférences électromagnétiques.
 8. Formez l’équipe médicale à reconnaître les problèmes potentiels liés aux interférences électromagnétiques.
 9. Supprimez ou réduisez les interférences électromagnétiques par le biais de solutions techniques (comme le blindage).
 10. Limitez l’utilisation des moyens de communication personnels (téléphones portables, ordinateurs) dans les zones où des dispositifs sensibles aux interférences électromagnétiques sont installés.
 11. Échangez avec les autres membres de l’équipe toute information pertinente relative aux interférences électromagnétiques, notamment avant l’achat d’un nouveau matériel susceptible de générer ce type d’interférences.
Remarque

Les caractéristiques d’émission des échographes SonoSite Edge II et SII permettent de les utiliser dans des zones industrielles et des hôpitaux (CISPR 11 Classe A). En cas d’utilisation dans un environnement résidentiel (pour lequel la norme CISPR 11 Classe B est normalement requise), il se peut que l’échographe n’offre pas une protection adéquate aux services de communication par radiofréquence. Il peut donc être nécessaire de prendre des mesures d’atténuation, comme une relocalisation ou une ré-orientation de l’échographe.

Transmission sans fil

Les échographes SonoSite Edge II et SII mettent en œuvre deux solutions sans fil.

- Le dongle USB sans fil (Panda) est un petit adaptateur sans fil qui se branche sur le port USB situé :
 - sur le côté droit de l’échographe Edge II,
 - à l’arrière, en haut, de l’échographe SII.
- Le module de communication sans fil et sécurisée (Laird) est un module qui s’installe sur :
 - le couvercle de l’échographe Edge II, puis qui se branche au système à l’aide d’un cordon USB à angle droit ;
 - le bras du support de sonde de l’échographe SII, puis qui se branche au système à l’aide d’un cordon USB de 30 cm.

Reportez-vous aux informations ci-dessous pour connaître les informations sur la transmission de chaque solution.

Dongle USB sans fil (Panda)

Le dongle USB sans fil utilise les bandes de fréquences ISM (industrielles, scientifiques et médicales) de 2,412 à 2,4835 GHz selon la réglementation de votre pays. Le dongle comprend les méthodes de transmission suivantes :

- IEEE 802.11b avec étalement de spectre à séquence directe (DSSS) à 19 dBm : Débit maximal théorique de 54 Mbps, débit maximal réel : 27 Mbps
- IEEE 802.11g avec multiplexage par répartition orthogonale de la fréquence (OFDM) à 16 dBm : Débit maximal théorique de 54 Mbps, débit maximal réel : 27 Mbps
- IEEE 802.11n avec multiplexage par répartition orthogonale de la fréquence (OFDM) à 15 dBm :
 - 1T1R. Débit maximal théorique : 150 Mbps, débit maximal réel : 90 Mbps
 - 1T2R. Débit maximal théorique : 300 Mbps, débit maximal réel : Rx 160 Mbps
 - 2T2R. Débit maximal théorique : 300 Mbps, débit maximal réel : Rx 260 Mbps
Module de communication sans fil et sécurisée (Laird)

Le module de communication sans fil et sécurisée utilise les bandes de fréquences ISM (industrielles, scientifiques et médicales) allant de 1,400 à 2,4835 GHz et de 5,100 à 5,800 GHz. Le module met en œuvre quatre méthodes de transmission différentes :

- IEEE 802.11a avec multiplexage par répartition orthogonale de la fréquence (OFDM) à 11 dBm ± 2 dBm à 54 Mbps
- IEEE 802.11b avec étalement de spectre à séquence directe (DSSS) à 16 dBm ± 2,0 dBm à 11 Mbps
- IEEE 802.11g avec multiplexage par répartition orthogonale de la fréquence (OFDM) à 13 dBm ± 2,0 dBm à 54 Mbps
- IEEE 802.11n avec multiplexage par répartition orthogonale de la fréquence (OFDM) à 12 dBm ± 2,0 dBm (802.11gn) à MCS7

Accessoires et périphériques compatibles (SonoSite Edge II)

Vous pouvez utiliser ces accessoires FUJIFILM SonoSite et ces périphériques tiers avec le SonoSite Edge II.

AVERTISSEMENTS

- L’utilisation d’accessoires avec des systèmes médicaux autres que l’échographe Edge peut provoquer une hausse des émissions ou une baisse d’immunité du matériel médical.
- L’utilisation d’accessoires autres que ceux indiqués peut provoquer une augmentation des émissions ou une baisse d’immunité de l’échographe.
- L’échographe ne doit pas être utilisé dans un établissement domestique ou connecté au réseau électrique public.

Tableau 2 : Accessoires et périphériques compatibles avec l’échographe Edge II

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde rC60xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HFL38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tableau 2 : Accessoires et périphériques compatibles avec l’échographe Edge II (suite)

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Sonde ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L25x standard/blindée</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Sonde L38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L52x a</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Sonde P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde rP19x standard/blindée</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde TEExi</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Lecteur de codes-barres</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batterie pour PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Batterie</td>
<td>—</td>
</tr>
<tr>
<td>Batterie PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Imprimante noir et blanc</td>
<td>—</td>
</tr>
<tr>
<td>Câble d’alimentation imprimante noir et blanc</td>
<td>1 m</td>
</tr>
<tr>
<td>Imprimante couleur</td>
<td>—</td>
</tr>
<tr>
<td>Câble d’alimentation imprimante couleur</td>
<td>1 m</td>
</tr>
<tr>
<td>Câble vidéo imprimante couleur</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Fils de dérivation ECG</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Module ECG</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Câble auxiliaire ECG</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Station d’accueil SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Station SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Pédale</td>
<td>3 m</td>
</tr>
<tr>
<td>Petite souris</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>
Accessoires et périphériques compatibles (SonoSite SII)

Vous pouvez utiliser ces accessoires FUJIFILM SonoSite et ces périphériques tiers avec l’échographe SonoSite SII.

AVERTISSEMENTS

- L’utilisation d’accessoires avec des systèmes médicaux autres que l’échographe SonoSite SII peut provoquer une hausse des émissions ou une baisse d’immunité du matériel médical.

- L’utilisation d’accessoires autres que ceux indiqués peut provoquer une augmentation des émissions ou une baisse d’immunité de l’échographe.

Tableau 3 : Accessoires et périphériques compatibles avec l’échographe SonoSite SII

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde C35x</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>

Pour les sondes, la longueur maximale du câble est mesurée entre les serre-câbles. La longueur indiquée n’inclut pas les longueurs de câble situées sous les serre-câbles, à l’intérieur du boîtier de la sonde et à l’intérieur du connecteur de la sonde.

aLa sonde L52x est uniquement destinée à un usage vétérinaire.
<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde rC60xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HFL38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Sonde ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L25x standard/blindée</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Sonde L38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Sonde P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde rP19x standard/blindée</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Lecteur de codes-barres</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batterie pour PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Batterie</td>
<td>—</td>
</tr>
<tr>
<td>Batterie PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Imprimante noir et blanc</td>
<td>—</td>
</tr>
<tr>
<td>Câble d’alimentation imprimante noir et blanc</td>
<td>1 m</td>
</tr>
<tr>
<td>Câble de commande imprimante noir et blanc</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Câble vidéo imprimante noir et blanc</td>
<td>1,9 m</td>
</tr>
<tr>
<td>Pédale</td>
<td>3 m</td>
</tr>
<tr>
<td>Câble d’extension USB pour la pédale</td>
<td>2 m</td>
</tr>
<tr>
<td>Station SonoSite SII</td>
<td>—</td>
</tr>
<tr>
<td>Cordon d’alimentation (échographe)</td>
<td>3 m</td>
</tr>
<tr>
<td>Alimentation électrique avec câble CC</td>
<td>2 m</td>
</tr>
<tr>
<td>Alimentation électrique câble secteur</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
</tbody>
</table>
Tableau 3 : Accessoires et périphériques compatibles avec l’échographe SonoSite SII (suite)

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptateur sans fil USB</td>
<td>—</td>
</tr>
<tr>
<td>Clé USB</td>
<td>—</td>
</tr>
</tbody>
</table>

Pour les sondes, la longueur maximale du câble est mesurée entre les serre-câbles. La longueur indiquée n’inclut pas les longueurs de câble situées sous les serre-câbles, à l’intérieur du boîtier de la sonde et à l’intérieur du connecteur de la sonde.

Déclaration du fabricant

Les tableaux figurant dans cette section indiquent l’environnement d’utilisation prévu et les niveaux de conformité de l’échographe aux exigences de compatibilité électromagnétique. Pour obtenir des performances optimales, assurez-vous que l’échographe est utilisé dans les environnements décrits dans ces tableaux.

L’échographe doit être utilisé dans l’environnement électromagnétique défini ci-dessous.

<table>
<thead>
<tr>
<th>Test d’émission</th>
<th>Conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions RF CISPR 11</td>
<td>Groupe 1</td>
<td>Les échographes Edge II et SII utilisent l’énergie radioélectrique uniquement pour leurs fonctions internes. Ainsi, leurs émissions radioélectriques sont très faibles et ne sont pas susceptibles de provoquer des interférences dans le matériel électronique avoisinant.</td>
</tr>
<tr>
<td>Émissions RF CISPR 11</td>
<td>Classe A</td>
<td>Les échographes Edge II et SII peuvent être utilisés dans tous les établissements autres qu’à usage d’habitation ou directement connectés au réseau public d’alimentation électrique basse tension qui alimente les immeubles d’habitation.</td>
</tr>
<tr>
<td>Émissions d’harmoniques CEI 61000-3-2</td>
<td>Classe A</td>
<td></td>
</tr>
<tr>
<td>Fluctuations de tension/émissions de scintillement CEI 61000-3-3</td>
<td>Conforme</td>
<td></td>
</tr>
</tbody>
</table>
L’échographe doit être utilisé dans l’environnement électromagnétique défini ci-dessous.

Tableau 5 : Déclaration du fabricant – Immunité électromagnétique conformément à la norme CEI 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
</table>
| Décharge électrostatique (DES) CEI 61000-4-2 | ± 2,0 kV, ± 4,0 kV, ± 6,0 kV au contact, ± 2,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air | ± 2,0 kV, ± 4,0 kV, ± 6,0 kV au contact, ± 2,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air | Les sols doivent être en bois, en béton ou en céramique. Si les sols sont recouverts d’une matière synthétique, l’humidité relative doit être d’au moins 30 %.

| Transitoires électriques rapides en salves CEI 61000-4-4 | ± 2 kV sur le secteur, ± 1 kV sur les lignes de signaux | ± 2 kV sur le secteur, ± 1 kV sur les lignes de signaux | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.

| Surtension CEI 61000-4-5 | ± 1 kV ligne(s) à ligne(s), ± 2 kV ligne(s) à terre | ± 1 kV ligne(s) à ligne(s), ± 2 kV ligne(s) à terre | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.

| Creux de tension, brèves interruptions et fluctuations de tension sur secteur CEI 61000-4-11 | < 5 % U_T (baisse > 95 % en U_T) pendant 0,5 cycle, 40 % U_T (baisse de 60 % en U_T) pendant 5 cycles, 70 % U_T (baisse de 30 % en U_T) pendant 25 cycles, < 5 % U_T (baisse > 95 % en U_T) pendant 5 s | < 5 % U_T (baisse > 95 % en U_T) pendant 0,5 cycle, 40 % U_T (baisse de 60 % en U_T) pendant 5 cycles, 70 % en U_T (baisse de 30 % en U_T) pendant 25 cycles, < 5 % U_T (baisse > 95 % en U_T) pendant 5 s | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type. Si l’échographe FUJIFILM SonoSite doit continuer de fonctionner pendant les coupures de courant, il est recommandé d’alimenter l’échographe FUJIFILM SonoSite à partir d’une source d’alimentation sans coupure (ex. : un onduleur) ou d’une batterie.
Tableau 5 : Déclaration du fabricant - Immunité électromagnétique conformément à la norme CEI 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test d'immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champs magnétiques à la fréquence du réseau CEI 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>En cas de déformation de l’image, il peut être nécessaire d’éloigner l’échographe FUJIFILM SonoSite des champs magnétiques à la fréquence du réseau ou d’installer un blindage magnétique. Le champ magnétique à la fréquence du réseau doit être mesuré à l’emplacement d’installation prévu afin de vérifier qu’il est suffisamment faible.</td>
</tr>
<tr>
<td>RF conduite CEI 61000-4-6</td>
<td>3 Vrms De 150 kHz à 80 MHz</td>
<td>3 Vrms</td>
<td>Le matériel de communication radioélectrique portatif ou mobile ne doit pas être utilisé plus près des éléments de l’échographe FUJIFILM SonoSite, y compris les câbles, que la distance de sécurité recommandée calculée à partir de l’équation applicable à la fréquence de l’émetteur. Distance de sécurité recommandée (d = 1,2 \sqrt{P}).</td>
</tr>
</tbody>
</table>
Déclaration du fabricant – Immunité électromagnétique conformément à la norme CEI 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF par rayonnement CEI 61000-4-3</td>
<td>3 V/m
De 80 MHz à 2,5 GHz</td>
<td>3 V/m
De 80 MHz à 2,5 GHz</td>
<td>$d = 1,2 \sqrt{P}$ 80 MHz à 800 MHz
$d = 2,3 \sqrt{P}$ 800 MHz à 2,5 GHz
Où P est la puissance maximale de l’émetteur en watts (10) indiquée par le fabricant de l’émetteur et il s’agit de la distance de sécurité recommandée en mètres (m).</td>
</tr>
</tbody>
</table>

L’intensité des champs des émetteurs RF fixes, telle qu’elle est déterminée par une étude électromagnétique du site, doit être inférieure au niveau de conformité dans chaque plage de fréquences. Des interférences peuvent se produire au voisinage du matériel portant le symbole :

(CEI 60417 n° 417-CEI-5140 : « Source de rayonnements non ionisants »)

Remarque
U_T est la tension secteur avant application du niveau de test. À 80 MHz et 800 MHz, la plage de fréquences la plus élevée s’applique. Ces recommandations peuvent ne pas s’appliquer à toutes les situations. La propagation électromagnétique est affectée par l’absorption et la réflexion des structures, des objets et des personnes.
Tableau 5 : Déclaration du fabricant – Immunité électromagnétique conformément à la norme CEI 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
</table>
| a. Décharge électrostatique (DES) CEI 61000-4-2 | ± 8,0 kV au contact ± 2,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air, ± 15 kV | ± 8,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air, ± 15 kV | Les sols doivent être en bois, en béton ou en céramique. Si les sols sont recouverts d’une matière synthétique, l’humidité relative doit être d’au moins 30 %.
| Transitoires électriques rapides en salves CEI 61000-4-4 | ± 2 kV sur le secteur ± 1 kV sur les lignes de signaux | ± 2 kV sur le secteur ± 1 kV sur les lignes de signaux | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.
| Surtension CEI 61000-4-5 | ± 1 kV ligne(s) à ligne(s) ± 2 kV ligne(s) à terre | ± 1 kV ligne(s) à ligne(s) ± 2 kV ligne(s) à terre | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
</table>
| Décharge électrostatique (DES) CEI 61000-4-2 | ± 8,0 kV au contact ± 2,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air, ± 15 kV | ± 8,0 kV, ± 4,0 kV, ± 8,0 kV dans l’air, ± 15 kV | Les sols doivent être en bois, en béton ou en céramique. Si les sols sont recouverts d’une matière synthétique, l’humidité relative doit être d’au moins 30 %.
| Transitoires électriques rapides en salves CEI 61000-4-4 | ± 2 kV sur le secteur ± 1 kV sur les lignes de signaux | ± 2 kV sur le secteur ± 1 kV sur les lignes de signaux | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.
| Surtension CEI 61000-4-5 | ± 1 kV ligne(s) à ligne(s) ± 2 kV ligne(s) à terre | ± 1 kV ligne(s) à ligne(s) ± 2 kV ligne(s) à terre | La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type.
Tableau 6 : Déclaration du fabricant – Immunité électromagnétique conformément à la norme CEI 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creux de tension, brèves interruptions et fluctuations de tension sur secteur CEI 61000-4-11</td>
<td>0 % Uₜ pendant 0,5 cycle 0 % Uₜ pendant 5 cycles 70 % Uₜ (baisse de 30 % en Uₜ) pendant 500 ms < 5 % Uₜ (baisse > 95 % en Uₜ) pendant 5 s</td>
<td>0 % Uₜ pendant 0,5 cycle 0 % Uₜ pendant 5 cycles 70 % en Uₜ (baisse de 30 % en Uₜ) pendant 500 ms < 5 % Uₜ (baisse > 95 % en Uₜ) pendant 5 s</td>
<td>La qualité de l’alimentation secteur doit être celle d’un environnement commercial ou hospitalier type. Si l’échographe FUJIFILM SonoSite doit continuer de fonctionner pendant les coupures de courant, il est recommandé d’alimenter l’échographe FUJIFILM SonoSite à partir d’une source d’alimentation sans coupure (ex. : un onduleur) ou d’une batterie.</td>
</tr>
<tr>
<td>Champs magnétiques à la fréquence du réseau CEI 61000-4-8</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>En cas de déformation de l’image, il peut être nécessaire d’éloigner l’échographe FUJIFILM SonoSite des champs magnétiques à la fréquence du réseau ou d’installer un blindage magnétique. Le champ magnétique à la fréquence du réseau doit être mesuré à l’emplacement d’installation prévu afin de vérifier qu’il est suffisamment faible.</td>
</tr>
<tr>
<td>RF conduite CEI 61000-4-6</td>
<td>3 Vrms De 150 kHz à 80 MHz 6 Vrms dans les bandes ISM</td>
<td>3 Vrms 6 Vrms dans les bandes ISM</td>
<td>Le matériel de communication radioélectrique portatif ou mobile ne doit pas être utilisé plus près des éléments de l’échographe FUJIFILM SonoSite, y compris les câbles, que la distance de sécurité recommandée calculée à partir de l’équation applicable à la fréquence de l’émetteur. Distance de sécurité recommandée (d = 1,2 \sqrt{P})</td>
</tr>
</tbody>
</table>
Tableau 6 : Déclaration du fabricant - Immunité électromagnétique conformément à la norme CEI 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
</table>
| RF par rayonnement CEI 61000-4-3 | 3 V/m De 80 MHz à 2,7 GHz| 3 V/m De 80 MHz à 2,7 GHz | $d = 1,2\sqrt{P}$ 80 MHz à 800 MHz
$\quad d = 2,3\sqrt{P}$ 800 MHz à 2,5 GHz
Où P est la puissance maximale de l’émetteur en watts (10) indiquée par le fabricant de l’émetteur et il s’agit de la distance de sécurité recommandée en mètres (m). |

Remarque

U_T est la tension secteur avant application du niveau de test. À 80 MHz et 800 MHz, la plage de fréquences la plus élevée s’applique. Ces recommandations peuvent ne pas s’appliquer à toutes les situations. La propagation électromagnétique est affectée par l’absorption et la réflexion des structures, des objets et des personnes.

<table>
<thead>
<tr>
<th>Test d’immunité</th>
<th>Niveau de test CEI 60601</th>
<th>Niveau de conformité</th>
<th>Environnement électromagnétique</th>
</tr>
</thead>
</table>
a. L’intensité de champ provenant des émetteurs fixes tels que les stations de base pour les radiotéléphones (cellulaires/sans fils) et la radiocommunication mobile terrestre, les radio-amateurs, les émissions de radio AM et FM et télévisées ne peut pas être prévue théoriquement avec précision. Pour évaluer l’environnement électromagnétique dû aux émetteurs radioélectriques fixes, une étude électromagnétique du site doit être envisagée. Si l’intensité de champ mesurée à l’emplacement d’utilisation de l’échographe FUJIFILM SonoSite dépasse le niveau de conformité radioélectrique applicable indiqué ci-dessus, alors l’échographe FUJIFILM SonoSite doit être examiné afin de vérifier qu’il fonctionne normalement. En cas de fonctionnement anormal, des mesures supplémentaires peuvent être nécessaires, comme la réorientation ou le déplacement de l’échographe FUJIFILM SonoSite.
b. Pour une plage de fréquences comprise entre 150 kHz et 80 MHz, l’intensité de champ doit être inférieure à 3 V/m.

Avertissement de la FCC : Cet équipement a été testé et déclaré conforme aux limites pour appareils numériques de classe A, selon la section 15 de la réglementation FCC. Ces limites visent à fournir une protection raisonnable contre les interférences nuisibles lorsque l’équipement est utilisé dans un environnement commercial. Cet équipement génère, utilise et peut émettre une énergie de radiofréquence et, s’il n’est pas installé et utilisé conformément au manuel d’utilisation, il peut provoquer des interférences nuisibles pour les communications radio. Le fonctionnement de cet équipement dans une zone résidentielle est susceptible de provoquer des interférences nuisibles, auquel cas l’utilisateur devra y remédier à ses propres frais.

Accessoires et périphériques compatibles

L’avertissement suivant a été ajouté dans les guides d’utilisation du SonoSite Edge II et du SonoSite SII. La modification apparaîtra lors de la prochaine mise à jour.

AVERTISSEMENT
Si des périphériques sont connectés au système, veillez à ce que le système et les périphériques soient connectés au même circuit de dérivation alimenté par le secteur CA.
Symboles d’étiquetage

Tableau 7 : Symboles d’étiquetage des normes

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Titre</th>
<th>Organisme d’élaboration de normes</th>
<th>Numéro de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayonnements électromagnétiques non ionisants</td>
<td>CEI 60601-1-2:2007 Appareils électromédicaux – Partie 1-2 : Exigences générales pour la sécurité de base et les performances essentielles – Norme collatérale : compatibilité électromagnétique</td>
<td>5.1.1</td>
<td>Indique des niveaux généralement élevés et potentiellement dangereux de rayonnements non ionisants, ou indique des équipements ou systèmes, par ex. dans le domaine électrique médical, qui comprennent des émetteurs RF ou appliquent intentionnellement de l’énergie RF électromagnétique à des fins de diagnostic ou de traitement</td>
<td></td>
</tr>
<tr>
<td>Représentant agréé dans la Communauté européenne</td>
<td>ISO 15223-1 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux</td>
<td>5.1.2</td>
<td>Indique le représentant agréé dans la Communauté européenne</td>
<td></td>
</tr>
<tr>
<td>Numéro de série</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.1.7</td>
<td>Indique le numéro de série du fabricant permettant d’identifier un dispositif médical spécifique</td>
<td></td>
</tr>
</tbody>
</table>
Tableau 7 : Symboles d’étiquetage des normes (suite)

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Titre</th>
<th>Organisme d’élaboration de normes</th>
<th>Numéro de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![REF]</td>
<td>Numéro de référence</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.1.6</td>
<td>Indique le numéro de référence du fabricant permettant d’identifier le dispositif médical</td>
</tr>
<tr>
<td>![exclamation mark]</td>
<td>Mise en garde</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.4.4</td>
<td>Indique que l’utilisateur doit consulter le mode d’emploi pour connaître les mises en garde et les avertissements importants qui, pour diverses raisons, ne peuvent pas figurer directement sur le dispositif médical</td>
</tr>
<tr>
<td>![glass]</td>
<td>Fragile : manipuler avec soin</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.3.1</td>
<td>Indique un dispositif médical qui peut être cassé ou endommagé s’il n’est pas manipulé avec soin</td>
</tr>
<tr>
<td>![umbrella]</td>
<td>Conserver au sec</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.3.4</td>
<td>Indique un dispositif médical qui doit être protégé de l’humidité</td>
</tr>
<tr>
<td>![thermometer]</td>
<td>Limite de température</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.3.7</td>
<td>Indique les limites de température auxquelles le dispositif médical peut être exposé sans danger</td>
</tr>
<tr>
<td>Symbole</td>
<td>Titre</td>
<td>Organisme d’élaboration de normes</td>
<td>Numéro de référence</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>![Symbole]</td>
<td>Limites de pression atmosphérique</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.3.9</td>
<td>Indique la plage de pression atmosphérique à laquelle le dispositif médical peut être exposé sans danger</td>
</tr>
<tr>
<td>![Symbole]</td>
<td>Limite d’humidité</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.3.8</td>
<td>Indique la plage d’humidité à laquelle le dispositif médical peut être exposé sans danger</td>
</tr>
<tr>
<td>IPX7</td>
<td>Indice de protection assuré par le boîtier</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.3</td>
<td>Protégé contre les effets d’une immersion temporaire.</td>
</tr>
<tr>
<td>![Symbole]</td>
<td>Reportez-vous au livret/manuel d’instructions</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.2-10</td>
<td>Suivez les instructions d’utilisation (utilisation conforme à la norme CEI 60601-1)</td>
</tr>
<tr>
<td>![Symbole]</td>
<td>Consultez les instructions d’utilisation</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.4.3</td>
<td>Indique que l’utilisateur doit consulter le mode d’emploi</td>
</tr>
<tr>
<td>Symbole</td>
<td>Titre</td>
<td>Organisme d’élaboration de normes</td>
<td>Numéro de référence</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Courant alternatif</td>
<td>ISO 7000/CEI 60417</td>
<td>5032</td>
<td>Indique sur la plaque signalétique que l’appareil ne peut fonctionner qu'avec du courant alternatif, afin d’identifier les bornes adaptées</td>
</tr>
<tr>
<td></td>
<td>Marquage CE</td>
<td>Directive 93/42/CEE du Conseil</td>
<td>Article 17</td>
<td>Signifie Conformité technique européenne</td>
</tr>
<tr>
<td></td>
<td>Conformité Européenne N° de référence de l’organisme notifié 2797</td>
<td>Directive 93/42/CEE du Conseil</td>
<td>Article 17</td>
<td>Indique la conformité technique européenne et l’identification de l’organisme notifié responsable de la mise en œuvre des procédures établies dans les Annexes II, IV, V et VI.</td>
</tr>
<tr>
<td></td>
<td>Tension dangereuse</td>
<td>ISO 7000/CEI 60417</td>
<td>5036</td>
<td>Indique les dangers causés par une tension dangereuse</td>
</tr>
<tr>
<td></td>
<td>Nombre limite d’empilement</td>
<td>ISO 7000/CEI 60417</td>
<td>2403</td>
<td>Indique que les éléments empilés à la verticale ne doivent pas dépasser le nombre d’éléments précisé</td>
</tr>
<tr>
<td></td>
<td>Attention : matériel chaud</td>
<td>ISO 7000/CEI 60417</td>
<td>5041</td>
<td>Indique que l’élément signalé peut être chaud et que tout contact doit se faire prudemment</td>
</tr>
<tr>
<td></td>
<td>Attention : risque de champ magnétique statique</td>
<td>ISO 7000/CEI 60417</td>
<td>6204</td>
<td>Identifie les zones présentant d’éventuels forces et champs magnétiques statiques dangereux dans une installation</td>
</tr>
<tr>
<td>Symbole</td>
<td>Titre</td>
<td>Organisme d’élaboration de normes</td>
<td>Numéro de référence</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Pièces appliquées de type BF</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.2-10</td>
<td>Indique une pièce appliquée de type BF conforme à la norme CEI 60601-1</td>
</tr>
<tr>
<td></td>
<td>Pièce appliquée de type CF protégée contre les chocs de défibrillation</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.1-27</td>
<td>Identifie une pièce appliquée de type CF protégée contre les chocs de défibrillation, conforme à la norme CEI 60601-1</td>
</tr>
<tr>
<td></td>
<td>Appareil sensible aux décharges électrostatiques</td>
<td>CEI 60417:2002 Symboles graphiques à utiliser sur l’appareil</td>
<td>5134</td>
<td>Indique les colis contenant des appareils sensibles aux décharges électrostatiques ou Identifie un appareil ou un connecteur dont l’immunité aux décharges électrostatiques n’a pas été testée</td>
</tr>
<tr>
<td></td>
<td>Code de lot ou code de date comme numéro de contrôle</td>
<td>ISO 15223-1 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.1.5</td>
<td>Indique le code de lot du fabricant permettant d’identifier le lot</td>
</tr>
</tbody>
</table>
Tableau 7 : Symboles d’étiquetage des normes (suite)

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Titre</th>
<th>Organisme d’élaboration de normes</th>
<th>Numéro de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risque biologique</td>
<td>ISO 7010 - Symboles graphiques -- Couleurs et signaux de sécurité</td>
<td>W009</td>
<td>Pour prévenir d’un danger biologique</td>
</tr>
<tr>
<td></td>
<td>Symboles de sécurité INMETRO</td>
<td>—</td>
<td>—</td>
<td>Indique un organisme de certification brésilien accrédité par le National Institute of Metrology Standardization and Industrial Quality (INMETRO)</td>
</tr>
<tr>
<td></td>
<td>Marque du certificat de l’Association canadienne de normalisation (CSA)</td>
<td>—</td>
<td>—</td>
<td>Marque du certificat de la CSA signifiant que le produit est conforme aux exigences applicables de la CSA et de l’ANSI/UL et que son utilisation est autorisée au Canada et aux États-Unis</td>
</tr>
<tr>
<td></td>
<td>Recyclage : Équipement électronique</td>
<td>BS EN 50419:2016 Marquage des équipements électriques et électroniques conformément à la Directive 2012/19/UE (DEEE).</td>
<td>Annexe IX</td>
<td>Ne pas jeter à la poubelle</td>
</tr>
<tr>
<td></td>
<td>Recyclage du carton ondulé</td>
<td>—</td>
<td>—</td>
<td>Le carton d’expédition est constitué de carton ondulé et doit être recyclé en conséquence</td>
</tr>
<tr>
<td></td>
<td>Date de fabrication</td>
<td>ISO 7000 – Symboles graphiques utilisables sur le matériel</td>
<td>5.1.3</td>
<td>Indique la date à laquelle le produit a été fabriqué</td>
</tr>
<tr>
<td></td>
<td>Courant continu (CC)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Tableau 7 : Symboles d’étiquetage des normes (suite)

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Titre</th>
<th>Organisme d’élaboration de normes</th>
<th>Numéro de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC</td>
<td>21 Part 15</td>
<td>Déclaration de conformité de la Commission fédérale des communications (FCC, Federal Communications Commission)</td>
<td>Commis- sion fédérale des communications</td>
<td>Testé FCC selon les exigences de la Commission fédérale des communications. Cet appareil est conforme aux réglementations des États-Unis (FCC) sur les appareils électroniques</td>
</tr>
<tr>
<td>GEL</td>
<td>Gel</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Recyclage du papier</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPX7</td>
<td>Indice de protection assuré par le boîtier</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.3</td>
<td>Protégé contre les effets d’une immersion temporaire dans l’eau. Équipement submersible, protégé contre les effets d’une immersion temporaire.</td>
</tr>
<tr>
<td>IPX8</td>
<td>Indice de protection assuré par le boîtier</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
<td>D.3</td>
<td>Protégé contre les effets d’une immersion temporaire dans l’eau. Équipement étanche, protégé contre les effets d’une immersion prolongée.</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indique que l’équipement doit être manipulé avec soin</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indique qu’il faut suivre les instructions de temps de désinfection du fabricant</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indique qu’il faut désinfecter la sonde</td>
</tr>
<tr>
<td>Symbole</td>
<td>Titre</td>
<td>Organisme d’élaboration de normes</td>
<td>Numéro de référence</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Charge de poids maximale</td>
<td>CEI 60601-1 Appareils électromédicaux Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles.</td>
<td>7.2.21</td>
<td>Indique le poids total de l'équipement, y compris la charge utile de sécurité</td>
</tr>
<tr>
<td></td>
<td>Marque de certification Underwriters Laboratories</td>
<td>—</td>
<td>—</td>
<td>Marque de certification concernant le choc électrique, l'incendie et les dangers mécaniques uniquement</td>
</tr>
<tr>
<td></td>
<td>Certification de produit UL.</td>
<td>—</td>
<td>—</td>
<td>Le produit ou l'entreprise satisfait à des normes strictes du point de vue de la sécurité des produits.</td>
</tr>
<tr>
<td></td>
<td>Contrôle de la pollution en Chine (10)</td>
<td>ISO 7000:2014 Symboles graphiques à utiliser sur l'appareil</td>
<td>1135</td>
<td>Logo du contrôle de la pollution. (S’applique à toutes les pièces/tous les produits indiqués dans la liste RoHS chinoise. Peut ne pas figurer à l’extérieur de certaines pièces/certains produits par manque de place.)</td>
</tr>
<tr>
<td>Symbole</td>
<td>Titre</td>
<td>Organisme d’élaboration de normes</td>
<td>Numéro de référence</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Marquage de certification China Compulsory Certificate (« Marquage CCC »). Un marquage de sécurité obligatoire quant à la conformité aux normes nationales chinoises pour de nombreux produits vendus en République populaire de Chine.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>STERILE EO</td>
<td>Stérilisé par exposition à l’oxyde d’éthylène</td>
<td>ISO 15223-1 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.2.3</td>
<td>Indique un dispositif médical ayant été stérilisé par exposition à l’oxyde d’éthylène</td>
</tr>
<tr>
<td>STERILE R</td>
<td>Stérilisé par irradiation</td>
<td>ISO 15223-1 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.2.4</td>
<td>Indique un dispositif médical ayant été stérilisé par irradiation</td>
</tr>
</tbody>
</table>
Tableau 7 : Symboles d’étiquetage des normes (suite)

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Titre</th>
<th>Organisme d’élaboration de normes</th>
<th>Numéro de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>SII uniquement) Numéro de référence</td>
<td>ISO 15223-1:2016 Dispositifs médicaux – Symboles à utiliser avec les étiquettes, l’étiquetage et les informations à fournir relatifs aux dispositifs médicaux – Partie 1 : Exigences générales</td>
<td>5.1.6</td>
<td>Indique le numéro de référence du fabricant permettant d’identifier le dispositif médical</td>
</tr>
<tr>
<td></td>
<td>(SII uniquement) Tension dangereuse</td>
<td>ISO 7000/CEI 60417 Symboles graphiques utilisables sur le matériel</td>
<td>5036</td>
<td>Indique les dangers causés par une tension dangereuse</td>
</tr>
<tr>
<td></td>
<td>(SII uniquement) Réservé à un usage intérieur</td>
<td>ISO 7000/CEI 60417 Symboles graphiques utilisables sur le matériel</td>
<td>5957</td>
<td>Identifie les appareils électriques conçus principalement pour un usage intérieur</td>
</tr>
</tbody>
</table>

Caractéristiques

Sondes prises en charge (SonoSite SII)

La section suivante, redondante, a été retirée du guide d’utilisation du SonoSite SII. Des informations identiques figurent dans le Tableau 9–2 du guide d’utilisation. La modification apparaîtra lors de la prochaine mise à jour.

Tableau 8 : Sondes prises en charge

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde rC60xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HFL38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde HSL25x</td>
<td>2,4 m</td>
</tr>
</tbody>
</table>

Pour les sondes, la longueur maximale du câble est mesurée entre les serre-câbles. La longueur indiquée n’inclut pas les longueurs de câble situées sous les serre-câbles, à l’intérieur du boîtier de la sonde et à l’intérieur du connecteur de la sonde.
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Longueur maximale du câble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonde ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Sonde L38xi standard/blindée</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Sonde L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Sonde P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Sonde rP19x standard/blindée</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>

Pour les sondes, la longueur maximale du câble est mesurée entre les serre-câbles. La longueur indiquée n’inclut pas les longueurs de câble situées sous les serre-câbles, à l’intérieur du boîtier de la sonde et à l’intérieur du connecteur de la sonde.

Normes

Normes de sécurité électromécanique

Tableau 9 : Normes de sécurité électromécanique

<table>
<thead>
<tr>
<th>Norme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA C22.2 no 60601-1:2014 (Édition 3.1)</td>
<td>Équipement électrique à usage médical – Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
</tr>
<tr>
<td>CEI 60601-1:2012 (Édition 3.1)</td>
<td>Équipement électrique à usage médical – Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
</tr>
<tr>
<td>CEI 60601-2-37:2015</td>
<td>Équipement électrique à usage médical – Partie 2-37 : Exigences particulières pour la sécurité de base et les performances essentielles des appareils de diagnostic et de surveillance médicaux à ultrasons</td>
</tr>
<tr>
<td>CEI 60601-1-6:2013</td>
<td>Appareils électromédicaux – Partie 1-6 : Exigences générales pour la sécurité de base et les performances essentielles – Norme collatérale : Aptitude à l’utilisation</td>
</tr>
<tr>
<td>JIS T0601-1:2012 (3e édition)</td>
<td>Norme industrielle japonaise : Appareils électromédicaux – Partie 1 : Exigences générales pour la sécurité de base et les performances essentielles</td>
</tr>
</tbody>
</table>
Puissance acoustique

Principe ALARA

Application du principe ALARA

L’échographiste sélectionne le mode d’imagerie en fonction des informations diagnostiques requises. L’imagerie 2D fournit des informations anatomiques. L’imagerie CPD fournit des informations sur l’énergie ou l’amplitude du signal Doppler en fonction du temps dans une zone anatomique donnée ; elle est utilisée pour détecter la présence de flux sanguin. L’imagerie Couleur fournit des informations sur l’énergie ou l’amplitude du signal Doppler en fonction du temps dans une zone anatomique donnée ; elle est utilisée pour détecter la présence, la vitesse et la direction du flux sanguin. L’imagerie d’harmonique tissulaire (THI) utilise des fréquences de réception plus hautes pour réduire les échos parasites, les artefacts et améliorer la résolution des images 2D. Une bonne compréhension du mode d’imagerie utilisé permet à l’échographiste qualifié d’appliquer le principe ALARA.

Une utilisation prudente signifie que le patient est exposé à la puissance acoustique la plus basse possible pendant le temps minimal nécessaire à l’obtention de résultats diagnostiques acceptables. Le choix d’une utilisation prudente se base sur le type de patient et ses antécédents, le type d’examen, la facilité ou la difficulté d’obtention d’informations utiles du point de vue diagnostique, ainsi que l’échauffement local possible du patient lié à la température de surface de la sonde.

L’échographe a été conçu de sorte que la température à l’avant de la sonde ne dépasse pas les limites données dans la norme CEI 60601-2-37 : « Exigence particulière relative à la sécurité du matériel de surveillance et de diagnostic médical échographique ». Voir « Augmentation de la température de surface des sondes » en page 10-9. En cas de dysfonctionnement, des commandes redondantes permettent de limiter la puissance de la sonde, notamment grâce à une conception électrique qui limite à la fois le courant électrique et la tension dans la sonde.

L’échographiste utilise les commandes de l’échographe pour ajuster la qualité de l’image et limiter la puissance acoustique. Les commandes de puissance acoustique de l’échographe sont divisées en trois catégories : celles qui agissent directement sur la puissance acoustique, celles qui agissent indirectement sur celle-ci et celles du récepteur.
Commandes directes

L’échographe ne dépasse pas une ISPTA (intensité du pic spatial moyennée dans le temps) de 720 mW/cm² pour tous les modes d’imagerie. (Pour les examens Ophtalmique ou Orbital, la puissance acoustique est limitée aux valeurs suivantes : l’ISPTA ne dépasse pas 50 mW/cm² ; l’IT ne dépasse pas 1,0 et l’IM ne dépasse pas 0,23.) L’indice mécanique (IM) et l’indice thermique (IT) peuvent avoir des valeurs supérieures à 1,0 sur certaines sondes dans certains modes d’imagerie. Vous pouvez surveiller les valeurs d’IM et d’IT et ajuster les réglages pour réduire ces valeurs. Voir « Recommandations pour réduire l’IM et l’IT » en page 10-3 Vous pouvez également appliquer le principe ALARA en définissant les valeurs d’IM ou d’IT sur un indice bas puis en modifiant ce niveau jusqu’à obtention d’une image satisfaisante ou passage au mode Doppler. Pour obtenir davantage d’informations sur l’IM et l’IT, voir Medical Ultrasound Safety, AIUM (un exemplaire est fourni avec chaque échographe) et la norme CEI 60601-2-37 Annexe « Guidance on the interpretation of TI and MI to be used to inform the operator » (Directives relatives à l’interprétation de l’IT et de l’IM pour l’information de l’opérateur).

Affichage de la puissance acoustique

Documents connexes

Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers [Informations destinées aux fabricants d’échographes et de capteurs échographiques à usage diagnostique, faisant une demande d’autorisation de mise sur le marché], FDA, 2008.

Medical Ultrasound Safety [Sécurité de l’échographie médicale], American Institute of Ultrasound in Medicine (AIUM), 2014. (Un exemplaire est fourni avec chaque échographe.)

CEI 60601-2-37 : 2015, Exigences particulières pour la sécurité de base et les performances essentielles des appareils de diagnostic et de surveillance à ultrasons.

Augmentation de la température de surface des sondes

Le Tableau 10-4 et le Tableau 10-5 indiquent l’augmentation de la température de surface mesurée par rapport à la température ambiante (23 °C ± 3 °C) pour les sondes utilisées sur l’échographe. Les températures ont été mesurées conformément à la norme CEI 60601-2-37, les commandes et les paramètres ayant été définis pour obtenir des températures maximales.
Mesure de la puissance acoustique

Tableaux de puissance acoustique

Le format des tableaux de puissance acoustique a été mis à jour.

Modèle de sonde : C8x Mode de fonctionnement : 2D ... 318
Modèle de sonde : C8x Mode de fonctionnement : M mode ... 319
Modèle de sonde : C8x Mode de fonctionnement : Color/CPD .. 320
Modèle de sonde : C8x Mode de fonctionnement : PW Doppler .. 321
Modèle de sonde : C11x Mode de fonctionnement : PW Doppler .. 322
Modèle de sonde : C35x Mode de fonctionnement : 2D ... 323
Modèle de sonde : C35x Mode de fonctionnement : PW Doppler .. 324
Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : 2D 325
Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : M mode 326
Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : Color/CPD 327
Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : PW Doppler ... 328
Modèle de sonde : HFL38xi Mode de fonctionnement : 2D ... 329
Modèle de sonde : HFL38xi Mode de fonctionnement : M mode ... 330
Modèle de sonde : HFL38xi Mode de fonctionnement : Color/CPD ... 331
Modèle de sonde : HFL38xi Mode de fonctionnement : PW Doppler ... 332
Modèle de sonde : HFL50x Mode de fonctionnement : 2D ... 333
Modèle de sonde : HFL50x Mode de fonctionnement : M mode .. 334
Modèle de sonde : HFL50x Mode de fonctionnement : Color ... 335
Modèle de sonde : HFL50x Mode de fonctionnement : PW Doppler ... 336
Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : 2D 337
Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : M mode 338
Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : Color/CPD 339
Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : PW Doppler ... 340
Modèle de sonde : HSL25x Mode de fonctionnement : 2D ... 341
Modèle de sonde : HSL25x Mode de fonctionnement : Color/CPD .. 342
Modèle de sonde : HSL25x Mode de fonctionnement : PW Doppler .. 343
Modèle de sonde : ICTx Mode de fonctionnement : PW Doppler ... 344
Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : 2D 345
Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : M mode 346
Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : Color/CPD 347
Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : PW Doppler 348
Modèle de sonde : L25x Mode de fonctionnement : 2D ... 349
Modèle de sonde : L25x Mode de fonctionnement : Color/CPD ... 350
Modèle de sonde : L25x Mode de fonctionnement : PW Doppler ... 351
Modèle de sonde : L38xi Mode de fonctionnement : M mode ... 352
Modèle de sonde : L38xi Mode de fonctionnement : Color/CPD ... 353
Modèle de sonde : L38xi Mode de fonctionnement : PW Doppler ... 354
Modèle de sonde : P10x Mode de fonctionnement : Color ... 355
Modèle de sonde : P10x Mode de fonctionnement : CW Doppler ... 356
Modèle de sonde : P10x Mode de fonctionnement : PW Doppler ... 357
Modèle de sonde : rC60xi Mode de fonctionnement : 2D ... 358
Modèle de sonde : rC60xi Mode de fonctionnement : M mode ... 359
Modèle de sonde : rC60xi Mode de fonctionnement : Color/CPD ... 360
Modèle de sonde : rC60xi Mode de fonctionnement : PW Doppler ... 361
Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : 2D .. 362
Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : M mode 363
Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : Color/CPD 364
Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : PW Doppler 365
Modèle de sonde : rP19x Mode de fonctionnement : M mode ... 366
Modèle de sonde : rP19x Mode de fonctionnement : Color/CPD ... 367
Modèle de sonde : rP19x Mode de fonctionnement : PW Doppler .. 368
Modèle de sonde : rP19x Mode de fonctionnement : CW Doppler ... 369
Modèle de sonde : rP19x Mode de fonctionnement : M mode ... 370
Modèle de sonde : TEExi Mode de fonctionnement : CW Doppler ... 371
Modèle de sonde : TEExi Mode de fonctionnement : PW Doppler .. 372
Modèle de sonde : TEExi Mode de fonctionnement : M mode ... 373
Tableau 10 : Modèle de sonde : C8x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>(IM)</th>
<th>(ITM)</th>
<th>(ITO)</th>
<th>(ITC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{r,\alpha}) à (z_{IM}) (MPa)</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>5,53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{r}) à (z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{r}) (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) à (z_{pii,\alpha}) (W/cm²)</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) à (z_{pii,\alpha}) ou (z_{sii,\alpha}) (mW/cm²)</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) à (z_{pii}) ou (z_{sii}) (mW/cm²)</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>2,5–3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Inactif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 11 : Modèle de sonde : C8x Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_r,α à z_{IM} (MPa)</td>
<td>2,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{pr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td></td>
<td>3,57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 12 : Modèle de sonde : C8x Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ p_{r,\alpha} \rightarrow z_{IM}$ (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2 548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} \rightarrow z_{pii,\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} \rightarrow z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} \rightarrow z_{pii}$ ou z_{sii} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r \rightarrow z_{pii}$ (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td>Type d’examen</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/1,5–1,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Élevée/Toute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Étroite/Toute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 13 : Modèle de sonde : C8x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,4</td>
</tr>
<tr>
<td>p_r,α à z_{IM} (MPa)</td>
<td>2,28</td>
<td>#</td>
<td>23,1</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>23,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>23,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,8</td>
<td>#</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{iii,\alpha}$ (cm)</td>
<td>1,8</td>
<td>#</td>
<td>4,80</td>
<td>#</td>
</tr>
<tr>
<td>f_{aw} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>4,80</td>
<td></td>
</tr>
<tr>
<td>p_{r} à $z_{III,\alpha}$ (MPa)</td>
<td>3,1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autres informations				

p_{rr} (Hz)	1 008			
s_{rr} (Hz)	—			
n_{pps}	1			
$I_{pa,\alpha}$ à $z_{III,\alpha}$ (W/cm²)	263			
$I_{spta,\alpha}$ à $z_{III,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)	334			
I_{spta} à z_{III} ou z_{sii} (mW/cm²)	616			
p_{r} à z_{III} (MPa)	3,1			

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th>Type d’examen</th>
<th>Taille du volume d’échantillon (mm)</th>
<th>Position du volume d’échantillon</th>
<th>FRI (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>1</td>
<td>Zone 4</td>
<td>1 008</td>
<td>1 008</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 14 : Modèle de sonde : C11x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
</tr>
<tr>
<td>P (mW)</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
</tr>
<tr>
<td>z_s (cm)</td>
</tr>
<tr>
<td>z_b (cm)</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
</tr>
<tr>
<td>n_{pps}</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
</tr>
<tr>
<td>I_{spta} à $z_{ pii}$ ou z_{sii} (mW/cm²)</td>
</tr>
<tr>
<td>p_{r} à $z_{ pii}$ (MPa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
</tr>
<tr>
<td>FRI (Hz)</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 15 : Modèle de sonde : C35x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1 021</td>
<td>1 021</td>
<td>1 021</td>
<td>1 021</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,98</td>
<td>7,98</td>
<td>7,98</td>
<td>7,98</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>$I_{spt_{a,\alpha}}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,6</td>
<td>8,6</td>
<td>8,6</td>
<td>8,6</td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>16,5</td>
<td>16,5</td>
<td>16,5</td>
<td>16,5</td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>2,61</td>
<td>2,61</td>
<td>2,61</td>
<td>2,61</td>
</tr>
</tbody>
</table>

Autres informations

p_{rr} à z_{pii} (Hz)	1 021	1 021	1 021	1 021
s_{rr} (Hz)	7,98	7,98	7,98	7,98
n_{pps}	1	1	1	1
$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)	250	250	250	250
$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)	8,6	8,6	8,6	8,6
I_{spta} à z_{pii} ou z_{sii} (mW/cm²)	16,5	16,5	16,5	16,5
p_r à z_{pii} (MPa)	2,61	2,61	2,61	2,61
Commandes de fonctionnement	Type d’examen	Msk	Msk	Msk
	Optimisation	Res	Res	Res
	Profondeur (cm)	8,3	8,3	8,3
	MB	S/O	S/O	S/O

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)

— Données non applicables pour cette sonde/ce mode.
Tableau 16 : Modèle de sonde : C35x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,6</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>71,1</td>
<td>47,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Colonne</td>
<td>Colonne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 5</td>
<td>Zone 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>6 250</td>
<td>15 625</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 17 : Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,007</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>0,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,77</td>
<td>0,77</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,21</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,59</td>
<td>6,75</td>
<td>6,75</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ à $z_{pii,a}$ (W/cm²)</td>
<td>11,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ à $z_{pii,a}$ ou $z_{si,a}$ (mW/cm²)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{si} (mW/cm²)</td>
<td></td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>4,9</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Actif</td>
<td>Actif</td>
<td>Actif</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 18 : Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,003</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>p_r,α à z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>z_{pii,α} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{pa,α} à z_{pii,α} (W/cm²)</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{spta,α} à z_{pii,α} ou z_{sii,α} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_r à z_{pii} (MPa)</td>
<td>0,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 19 : Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libellé de l’indice</td>
<td>IM</td>
<td>ITM</td>
<td>ITO</td>
<td>ITC</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,11</td>
<td>1,11</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,75</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,11</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,11</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/1,5</td>
<td>Pen/4,9</td>
<td>Pen/4,9</td>
<td></td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Élevée/7 813</td>
<td>Élevée/6 944</td>
<td>Élevée/6 944</td>
<td></td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Bas/Petite</td>
<td>Déf/Étroite</td>
<td>Déf/Étroite</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 20 : Modèle de sonde : HFL38xi (utilisation ophtalmique) Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Valeur de l’indice maximal | 0,18 | 0,09 | 0,17 | (b) |
| Valeur composante de l’indice | | 0,09 | 0,06 | 0,09 | 0,17 |

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,64</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,33</td>
<td>5,33</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prr (Hz)</td>
<td>1 302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 302</td>
<td>10 417</td>
<td>10 417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 21 : Modèle de sonde : HFL38xi Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r,α à z_{IM} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2 127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>11,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>19,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_α à z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Ven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>S/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation de l’aiguille</td>
<td>Actif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 22 : Modèle de sonde : HFL38xi Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,14</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1 600</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>4,35</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Nrv</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Pen</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>4,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcraniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal
- IM: 1,3
 - (a)

Valeur composante de l’indice
- IM: #
 - #
 - #

Paramètres acoustiques

- $p_{r,\alpha}$ à z_{IM}(MPa): 3,05
- P(mW)
- $P_{1\times1}$(mW)
- z_s(cm)
- z_b(cm)
- z_{IM}(cm): 1,2
- $z_{pii,\alpha}$(cm): 1,2
- f_{awf}(MHz): 5,36

Autres informations

- p_{rr}(Hz): 2 223
- s_{rr}(Hz): 3,3
- n_{pps}: 14
- $I_{pa,\alpha}$ à $z_{pii,\alpha}$(W/cm2): 494
- $I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$(mW/cm2): 27,4
- I_{spta} à z_{pii} ou z_{sii}(mW/cm2): 40,1
- P_{r} à z_{pii}(MPa): 3,81

Commandes de fonctionnement

<table>
<thead>
<tr>
<th>Type d’examen</th>
<th>SmP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>CVD</td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Res/3,3</td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Faible/401</td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Déf/Déf</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournue pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 24 : Modèle de sonde : HFL38xi Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>1,1</td>
<td>0,8</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,69</td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,69</td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,69</td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,69</td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>47,7</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 25 : Modèle de sonde : HFL50x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2 733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_α à z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Toutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Actif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 26 : Modèle de sonde : HFL50x Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,14</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1 600</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>4,35</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Tous</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Pen</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 27 : Modèle de sonde : HFL50x Mode de fonctionnement : Color

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>8 233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Optimisation/profondeur (cm)</td>
</tr>
<tr>
<td>FRI (Hz)</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 28 : Modèle de sonde : HFL50x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>1,1</td>
<td>1,9</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>1,1</td>
<td>0,7</td>
<td>1,1</td>
<td>1,9</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>42,6</td>
<td>42,6</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>42,6</td>
<td>42,6</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,34</td>
<td>5,34</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1 008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>599,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Tous</td>
<td>Tous</td>
<td>Tous</td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 008</td>
<td>1 563 - 3 125</td>
<td>1 563 - 3 125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 29 : Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,62</td>
<td>1,62</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,70</td>
<td>0,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>12 580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ à $z_{pii,a}$ (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ à $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Actif</td>
<td>Actif</td>
<td>Actif</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 30 : Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
<td>0,020</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,61</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_{r} (Hz)</td>
<td>1 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 31 : Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à $z_{pii,\alpha}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sil,\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sil} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3 096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sil,\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sil} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Faible/401</td>
<td>Moy./4 167</td>
<td>Moy./4 167</td>
<td></td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Déf/Déf</td>
<td>Haut/Courte et large</td>
<td>Haut/Courte et large</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 32 : Modèle de sonde : HSL25x (utilisation ophtalmique) Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM À la surface</th>
<th>ITM Sous la surface</th>
<th>ITO À la surface</th>
<th>ITO Sous la surface</th>
<th>ITC À la surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>6,03</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>1 953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{p_{a,\alpha}}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>18,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>44,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 953</td>
<td>5 208</td>
<td>5 208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 33 : Modèle de sonde : HSL25x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1 061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ à $z_{pii,a}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ à $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Toutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>1,9 – 2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Actif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)

— Données non applicables pour cette sonde/ce mode.
Tableau 34 : Modèle de sonde : HSL25x Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Libellé de l’indice maximal	1,0			
Valeur composante de l’indice		#	#	#
$p_{r,\alpha}$ à z_{IM} (MPa)	2,35			
P (mW)		#	#	#
$P_{1\times1}$ (mW)		#	#	#
z_s (cm)			—	
z_b (cm)				—
z_{IM} (cm)	0,8			
$z_{pii,\alpha}$ (cm)	0,8			
f_{awf} (MHz)	6,11	#		
Autres informations				
p_{rr} (Hz)	3 079			
s_{rr} (Hz)	8,0			
n_{pps}	14			
$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)	276			
$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)	47,6			
l_{spta} à z_{pii} ou z_{sii} (mW/cm²)	63,9			
p_r à z_{pii} (MPa)	2,78			

Type d’examen	Sup			
Mode	CVD			
Optimisation 2D/profondeur (cm)	Pen/3,1			
Optimisation des couleurs/FRI (Hz)	Faible/401			
Position/Taille de la zone Color	Déf/Déf			

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 35 : Modèle de sonde : HSL25x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,8</td>
<td>1,5</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>28,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>28,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>6,00</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 953</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 36 : Modèle de sonde : ICTx Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td>1,60</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,36</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td>Type d’examen</td>
<td>Tous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>Toutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 37 : Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>à la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>à la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>valeur composante de l’indice</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{\pi,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awF} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} à z_{π} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{p,\alpha}$ à $z_{\pi,\alpha}$ (W/cm²)</td>
<td></td>
<td>13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{\pi,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{π} ou z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{PP} (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{PP} (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{PA,\alpha}$ à $z_{\pi,\alpha}$ (W/cm²)</td>
<td></td>
<td>13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{\pi,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{π} ou z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{π} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>optimisation</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>profondeur (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Actif</td>
<td>Actif</td>
<td>Actif</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 38 : Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal

<table>
<thead>
<tr>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Valeur composante de l’indice

<table>
<thead>
<tr>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
<td>0,020</td>
</tr>
</tbody>
</table>

Paramètres acoustiques

<table>
<thead>
<tr>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\text{r,} \alpha}$ à z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{1 \times 1}$ (mW)</td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{\text{pii}, \alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
</tr>
</tbody>
</table>

Autres informations

<table>
<thead>
<tr>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{r} à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{r} (Hz)</td>
<td>1 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{p_{\text{a,} \alpha}}$ à $z_{\text{pii,} \alpha}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{\text{spta,} \alpha}$ à $z_{\text{pii,} \alpha}$ ou $z_{\text{pii,} \alpha}$ (mW/cm²)</td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{pii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>0,61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commandes de fonctionnement

<table>
<thead>
<tr>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 39 : Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha} \text{ à } z_{IM}$ (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pi,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} à z_{p} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{p} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3 096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} \text{ à } z_{pi,\alpha}$ (W/cm2)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha} \text{ à } z_{pi,\alpha}$ ou $z_{si,\alpha}$ (mW/cm2)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp} \text{ à } z_{pi}$ (mW/cm2)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{sp} à z_{pi} ou z_{si} (mW/cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{sp} à z_{pi} ou z_{si} (mW/cm2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pi} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Faible/401</td>
<td>Moy./4 167</td>
<td>Moy./4 167</td>
<td></td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Déf/Déf</td>
<td>Haut/Courte et large</td>
<td>Haut/Courte et large</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 40 : Modèle de sonde : L25x (utilisation ophtalmique) Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume d’échantillon (mm)</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Zone 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pos. volume d’échantillon</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 953</td>
<td>5 208</td>
<td>5 208</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1 953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 41 : Modèle de sonde : L25x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1 061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{si,\alpha}$ (mW/cm²)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_r à z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Vaulre de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 42 : Modèle de sonde : L25x Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,0</td>
<td>#</td>
<td>#</td>
<td>(a)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,35</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>ppr (Hz)</td>
<td>5 261</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm2)</td>
<td>276</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm2)</td>
<td>81,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spa} à z_{pii} ou z_{sii} (mW/cm2)</td>
<td>109,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>2,78</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Ven</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/3,1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Faible/779</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Déf/Déf</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 43 : Modèle de sonde : L25x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td>p_r,α à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>P_1 (mW)</td>
<td></td>
<td>#</td>
<td>32,1</td>
</tr>
<tr>
<td></td>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_{IM} (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f_{awf} (MHz)</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_1 (mW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_r à z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td>Type d’examen</td>
<td>Vas/Ven/Nrv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taille du volume d’échantillon (mm)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Position du volume d’échantillon</td>
<td>Zone 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRI (Hz)</td>
<td>1 953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 44 : Modèle de sonde : L38xi Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Valeur de l’indice maximal | 1,5 | (a) | (a) | (b) |

| Valeur composante de l’indice | # | # | # | # |

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p_{r,\alpha}$ à z_{IM} (MPa)	3,3	#	#	#
P (mW)		#	#	#
P_{1x1} (mW)		#	#	#
z_s (cm)		—		
z_b (cm)				
z_{IM} (cm)	0,8			
$z_{pii,\alpha}$ (cm)	0,8			
f_{awf} (MHz)	4,82	#	#	#

<table>
<thead>
<tr>
<th>Autres informations</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p_{rr} (Hz)	1 312	#	#	#
srr (Hz)	10,3	#	#	#
n_{pps}	1			
$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)	605			
$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)	10,2			
l_{spta} à z_{pii} ou z_{sii} (mW/cm²)	13,5			
p_r à z_{pii} (MPa)	3,79			

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>S/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation de l’aiguille</td>
<td>Actif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.

(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)

— Données non applicables pour cette sonde/ce mode.
Tableau 45 : Modèle de sonde : L38xi Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,9</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>37,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>37,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Gen</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>4,7</td>
<td>7,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 46 : Modèle de sonde : L38xi Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>3,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P (mW)</td>
<td>—</td>
<td>64,7</td>
<td>64,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>—</td>
<td>49,0</td>
<td>49,0</td>
<td>—</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>4,83</td>
<td>4,83</td>
<td>#</td>
</tr>
<tr>
<td>pr_{r} (Hz)</td>
<td>2 190</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>4,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>η_{pps}</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>35,6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>47,4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>3,79</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Art</td>
<td>Ven</td>
<td>Ven</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Optimisation 2D/profondeur (cm)</td>
<td>Pen/2,0</td>
<td>Pen/3,1</td>
<td>Pen/3,1</td>
<td></td>
</tr>
<tr>
<td>Optimisation des couleurs/FRI (Hz)</td>
<td>Faible/393</td>
<td>Bas/2 315</td>
<td>Bas/2 315</td>
<td></td>
</tr>
<tr>
<td>Position/Taille de la zone Color</td>
<td>Déf/Déf</td>
<td>Bas/Courte - étroite</td>
<td>Bas/Courte - étroite</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas
rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 47 : Modèle de sonde : L38xi Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>à la surface</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>à la surface</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur composante de l’indice

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>à la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paramètres acoustiques

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autres informations

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commandes de fonctionnement

<table>
<thead>
<tr>
<th>Type d’examen</th>
<th>Art</th>
<th>Nrv</th>
<th>Nrv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 0</td>
<td>Zone 7</td>
<td>Zone 7</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 008</td>
<td>10 417</td>
<td>10 417</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)

— Données non applicables pour cette sonde/ce mode.
<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal
(a) (a) (a) 1,1

Valeur composante de l’indice

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **$p_{r,\alpha}$ à z_{IM} (MPa)**
 #
- **P (mW)**
 # # # 42,2
- **P_{1x1} (mW)**
 # # #
- **z_{s} (cm)**
 —
- **z_{b} (cm)**
 —
- **z_{IM} (cm)**
 #
- **$z_{pii,\alpha}$ (cm)**
 #
- **f_{awf} (MHz)**
 # # # 3,89

Autres informations

<table>
<thead>
<tr>
<th>Autres informations</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **p_{rr} (Hz)**
 #
- **s_{rr} (Hz)**
 #
- **n_{pps}**
 #
- **$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)**
 #
- **$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)**
 #
- **I_{spta} à z_{pii} ou z_{sii} (mW/cm²)**
 #
- **p_{r} à z_{pii} (MPa)**
 #

Commandes de fonctionnement

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type d’examen**
 Crd
- **Mode**
 CVD
- **Optimisation 2D/profondeur**
 Pen/8,9/Étroite
- **Optimisation des couleurs/FRI**
 Faible/2 033
- **Position/Taille de la zone Color**
 Haut/Courte et large

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 49 : Modèle de sonde : P10x Mode de fonctionnement : CW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,8</td>
<td>1,7</td>
</tr>
<tr>
<td>valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,8</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>34,8</td>
<td>25,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>34,8</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 3</td>
<td>Zone 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 50 : Modèle de sonde : P10x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii,\alpha}}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
<td>3,86</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1 562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{p_{ii,\alpha}}$ (W/cm²)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{p_{ii,\alpha}}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à $z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>729,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{f} à $z_{p_{i}}$ (MPa)</td>
<td>2,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Crd</td>
<td>Crd</td>
<td>Abd</td>
<td>Crd</td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 2</td>
<td>Zone 6</td>
<td>Zone 1</td>
<td>Zone 0</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 562</td>
<td>1 008</td>
<td>1 953</td>
<td>15 625</td>
</tr>
<tr>
<td>TDI</td>
<td>Inactif</td>
<td>Actif</td>
<td>Inactif</td>
<td>Inactif</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.

Tableaux de puissance acoustique
Tableau 51 : Modèle de sonde : rC60xi Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>1,5</td>
</tr>
<tr>
<td>Sous la surface</td>
<td>(a)</td>
</tr>
<tr>
<td>À la surface</td>
<td>(a)</td>
</tr>
<tr>
<td>Sous la surface</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Valeur composante de l’indice

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>#</td>
</tr>
<tr>
<td>Sous la surface</td>
<td>#</td>
</tr>
<tr>
<td>À la surface</td>
<td>#</td>
</tr>
<tr>
<td>Sous la surface</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>2,31</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,3</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>4,3</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,36</td>
</tr>
</tbody>
</table>

Autres informations

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ à z_{IM} (MPa)</td>
<td>3,29</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td>3,29</td>
</tr>
</tbody>
</table>

Commandes de fonctionnement

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
<td>Abd</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>11</td>
</tr>
<tr>
<td>MB (multifaisceaux)</td>
<td>Inactif</td>
</tr>
<tr>
<td>THI</td>
<td>Actif</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 52 : Modèle de sonde : rC60xi Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur de l’indice maximal
- IM : 1,3 (a)
- ITM : 1,0 (b)

Valeur composante de l’indice

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>69,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>25,9</td>
<td></td>
</tr>
<tr>
<td>z_3 (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,66</td>
<td>#</td>
<td>2,89</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ à $z_{III,\alpha}$ (W/cm²)</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{III,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>144,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>328,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{sii} (MPa)</td>
<td>3,25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’examen</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimisation</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>6,6</td>
<td></td>
<td>9,2</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Inactif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
<td>1,2</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185,8</td>
<td></td>
<td>185,8</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107,5</td>
<td></td>
<td>107,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,22</td>
<td></td>
<td>2,21</td>
<td>2,21</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1 265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>9,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>15,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td>3,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas
rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 54 : Modèle de sonde : rC60xi Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>1,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>67,5</td>
<td>74,2</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>3,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
<td>#</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1 302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>793,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>2,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td>Type d’examen</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 3</td>
<td>Zone 6</td>
<td>Zone 5</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1 302</td>
<td>2 604</td>
<td>2 604</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 55 : Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr,α à zIM (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>zS (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>zB (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>zIM (cm)</td>
<td></td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpii,α (cm)</td>
<td></td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td></td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>6 413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>15,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipa,α à zpii,α (W/cm²)</td>
<td></td>
<td>4,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta,α à zpii,α ou zsiι,α (mW/cm²)</td>
<td></td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta à zpii ou zsiι (mW/cm²)</td>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr à zpii (MPa)</td>
<td></td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Inactif</td>
<td>Inactif</td>
<td>Inactif</td>
<td>Inactif</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 56 : Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,009</td>
<td>0,020</td>
<td>0,021</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td>0,006</td>
<td>0,009</td>
<td>0,006</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,34</td>
<td>1,34</td>
<td>1,34</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,67</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,15</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>2,06</td>
<td>1,83</td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paramètres acoustiques						

p_{r} (Hz)	800					
s_{rr} (Hz)	—					
n_{pps}	1					
$L_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)				4,05		
$L_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)				1,7		
L_{spta} à z_{pii} ou z_{sii} (mW/cm²)				2,7		
f_{awf} (MHz)			2,06	1,83	1,83	1,83

Autres informations					

$L_{pa,\alpha}$ à z_{pii} (W/cm²)				4,05	
$L_{spta,\alpha}$ à z_{pii} (mW/cm²)				1,7	
L_{spta} à z_{sii} (mW/cm²)				2,7	
p_{r} à z_{pii} (MPa)				0,31	

Commandes de fonctionnement					

Type d’examen	Orb	Orb	Orb	Orb	
Optimisation	Res	Gen	Gen	Gen	
Profondeur (cm)	4,7	35	35	35	

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 57 : Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>15,47</td>
<td>15,47</td>
<td>15,50</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>9,50</td>
<td>9,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>5 443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm2)</td>
<td>1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm2)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm2)</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autres informations

Type d’examen	Orb	Orb	Orb	Orb
Mode	CVD	CVD	CVD	CVD
Optimisation 2D/profondeur (cm)	Gen/4,7	Gen/24	Gen/24	Gen/24
Optimisation des couleurs/FRI (Hz)	Faible/1 157	Bas/3 125	Bas/3 125	Bas/3 125
Position/Taille de la zone Color	Déf/Déf	Haut/Courte et large	Haut/Courte et large	Haut/Courte et large

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 58 : Modèle de sonde : rP19x (utilisation orbitale) Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Valeur de l’indice maximal | 0,18 | 0,27 | 0,59 | 0,57 |
| Valeur composante de l’indice | 0,19 | 0,27 | 0,18 | 0,59 |

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **p r, α à z_{IM} (MPa)** | 0,27 | | | |
- **P (mW)** | 37,4 | 35,3 | 37,4 | |
- **P_{1x1} (mW)** | 17,5 | 17,0 | | |
- **z_s (cm)** | 2,5 | | | |
- **z_b (cm)** | | | | 3,35 |
- **z_{IM} (cm)** | 3,5 | | | |
- **z_{pii, α} (cm)** | 3,5 | | | |
- **f_{awf} (MHz)** | 2,23 | 2,23 | 2,23 | 2,23 |
- **Pr à z_{pii} (MPa)** | | | 0,36 | |

<table>
<thead>
<tr>
<th>Autres informations</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **prr (Hz)** | 1 953 | | | |
- **srr (Hz)** | — | | | |
- **n_{pps}** | 1 | | | |
- **I_{pa, α à z_{pii, α}} (W/cm²)** | 2,49 | | | |
- **I_{spta, α à z_{pii, α} ou z_{sii, α}} (mW/cm²)** | 28,9 | | | |
- **I_{spta à z_{pii} ou z_{sii}} (mW/cm²)** | 69,3 | | | |
- **P_{r à z_{pii}} (MPa)** | | | 0,36 | |

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type d’examen** | Orb | Orb | Orb | Orb |
- **Taille du volume d’échantillon (mm)** | 5 | 14 | 14 | 14 |
- **Position du volume d’échantillon** | Zone 6 | Zone 7 | Zone 5 | Zone 7 |
- **FRI (Hz)** | 1 953 | 1 953 | 1 953 | 1 953 |

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 59 : Modèle de sonde : rP19x Mode de fonctionnement : 2D

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>p_r, α à z_{IM} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>152,6</td>
<td>152,6</td>
<td>177,8</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>96,1</td>
<td>96,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>1,99</td>
<td>2,08</td>
<td>2,08</td>
</tr>
<tr>
<td>$p_{r, i}$ à z_{pii} (MPa)</td>
<td></td>
<td>2,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>6 186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>48,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ à $z_{pii, \alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha}$ à $z_{pii, \alpha}$ ou $z_{sii, \alpha}$ (mW/cm²)</td>
<td>25,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>38,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pii} (MPa)</td>
<td></td>
<td>2,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Abd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td>Pen</td>
</tr>
<tr>
<td>Profondeur (cm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4,7</td>
</tr>
<tr>
<td>MB/THI</td>
<td>Inactif/Inactif</td>
<td>Inactif/Actif</td>
<td>Inactif/Actif</td>
<td>Inactif/Actif</td>
</tr>
<tr>
<td>Largeur du secteur</td>
<td>S/O</td>
<td>Étroite</td>
<td>Étroite</td>
<td>S/O</td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 60 : Modèle de sonde : rP19x Mode de fonctionnement : M mode

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,2</td>
<td>1,7</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>55,0</td>
<td>62,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>28,5</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,33</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pi,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>#</td>
<td>1,81</td>
<td>1,77</td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pi,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ à $z_{pi,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à z_{pi} ou z_{sii} (mW/cm²)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} à z_{pi} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 61 : Modèle de sonde : rP19x Mode de fonctionnement : Color/CPD

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
<td>Sous la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
</tbody>
</table>

- **Paramètres acoustiques**
 - $p_{r,\alpha}$ à z_{IM} (MPa) : 2,1
 - P (mW) : 128,0, 128,0, 170,5
 - P_{1x1} (mW) : 115,6, 115,6
 - z_s (cm) :
 - z_b (cm) :
 - z_{IM} (cm) : 4,8
 - $z_{pii,\alpha}$ (cm) : 4,8
 - f_{awf} (MHz) : 1,99, 2,14, 2,14, 2,12

- **Autres informations**
 - p_{rr} (Hz) : 505
 - s_{rr} (Hz) : 7,9
 - n_{pps} :
 - $I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²) : 184
 - $I_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²) : 2,1
 - I_{spta} à z_{pii} ou z_{sii} (mW/cm²) : 3,2
 - p_α à z_{pii} (MPa) : 2,92

- **Type d’examen**
 - Abd
 - TCD
 - TCD
 - Crd

- **Mode/THI**
 - CVD/Inactif
 - CVD/Inactif
 - CVD/Inactif
 - CVD/Actif

- **Optimisation 2D/profondeur (cm)/largeur du secteur**
 - Gen/10/S/O
 - Pen/7,5/S/O
 - Pen/7,5/S/O
 - Gen/16/Étroite

- **Optimisation des couleurs/FRI (Hz)**
 - Faible/300
 - Bas/3 125
 - Bas/3 125
 - Élevée/5 208

- **Position/Taille de la zone Color**
 - Déf/Déf
 - Déf/Étroite
 - Déf/Étroite
 - Déf/Déf

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 62 : Modèle de sonde : rP19x Mode de fonctionnement : CW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>À la surface</td>
<td>Sous la surface</td>
<td>À la surface</td>
</tr>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r, \alpha}$ à z_{IM} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>125,4</td>
<td>125,4</td>
<td>125,4</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p{\iota}, \alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ à $z_{p{\iota}, \alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha}$ à $z_{p{\iota}, \alpha}$ ou $z_{s{\iota}, \alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} à $z_{p{\iota}}$ ou $z_{s{\iota}}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à $z_{p{\iota}}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td>Zone 0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 63 : Modèle de sonde : rP19x Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Valeur de l’indice maximal | 1,3 | 1,8 | 4,0 | 3,9 |
| Valeur composante de l’indice | | 1,3 | 1,8 | 1,2 | 4,0 |

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p_r,α à z_{IM} (MPa)	1,94				
P (mW)		253,7	240,2	251,1	
P_{1x1} (mW)		118,6	116,0		
z_s (cm)			2,5		
z_b (cm)				3,35	
z_{IM} (cm)				3,0	
$z_{pii,\alpha}$ (cm)				3,0	
f_{awf} (MHz)		2,14	2,23	2,23	2,10

<table>
<thead>
<tr>
<th>Paramètres acoustiques</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autres informations</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$l_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)	180			
$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)		374,9		
l_{spta} à z_{pii} ou z_{sii} (mW/cm²)		594,7		
p_{r} à z_{pii} (MPa)		2,42		

<table>
<thead>
<tr>
<th>Commandes de fonctionnement</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous la surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas
rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Tableau 64 : Modèle de sonde : TEExi Mode de fonctionnement : CW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Paramètres acoustiques

- $p_{r,\alpha} \times z_{IM}$ (MPa)
- P (mW)
- P_{1x1} (mW)
- z_s (cm)
- z_b (cm)
- z_{IM} (cm)
- $z_{pii,\alpha}$ (cm)
- f_{awf} (MHz)

Autres informations

- $p_{r,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)
- $l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)
- l_{spta} à z_{pii} ou z_{sii} (mW/cm²)
- $p_{r,\alpha}$ à z_{pii} (MPa)

Commandes de fonctionnement

- Type d’examen: Crd
- Volume d’échantillon: Zone 2

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.

Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)

— Données non applicables pour cette sonde/ce mode.
Tableau 65 : Modèle de sonde : TEExi Mode de fonctionnement : PW Doppler

<table>
<thead>
<tr>
<th>Libellé de l’indice</th>
<th>IM</th>
<th>ITM</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
<th>Sous la surface</th>
<th>À la surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur de l’indice maximal</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur composante de l’indice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ à z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>35,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>35,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>2,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètres acoustiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ à $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ à $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} à z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r à z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres informations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commandes de fonctionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type d’examen</td>
<td></td>
<td></td>
<td>Crd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille du volume d’échantillon (mm)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position du volume d’échantillon</td>
<td></td>
<td></td>
<td>Zone 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRl (Hz)</td>
<td></td>
<td></td>
<td>2 604</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cet indice n’est pas nécessaire pour ce mode de fonctionnement, la valeur est <1.
(b) Cette sonde n’est pas destinée aux examens transcrâniens ou céphaliques des nouveau-nés.
Aucune donnée n’est fournie pour ce mode de fonctionnement car la valeur de l’indice maximum global n’est pas rapportée pour la raison indiquée. (Ligne Valeur de l’indice maximal global de référence.)
— Données non applicables pour cette sonde/ce mode.
Termes utilisés dans les tableaux de puissance acoustique

Tableau 66 : Termes utilisés dans les tableaux de puissance acoustique

<table>
<thead>
<tr>
<th>Terme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Coefficient d’atténuation utilisé pour le déclassement. Égal à 0,3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Fréquence de fonctionnement acoustique.</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$</td>
<td>Intensité atténuée moyenne de l’impulsion.</td>
</tr>
<tr>
<td>I_{spa}</td>
<td>Intensité du pic spatial moyennée dans le temps.</td>
</tr>
<tr>
<td>$I_{spa,\alpha}$</td>
<td>Intensité atténuée du pic spatial moyennée dans le temps.</td>
</tr>
<tr>
<td>IM</td>
<td>Indice mécanique.</td>
</tr>
<tr>
<td>P</td>
<td>Puissance de sortie.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Puissance d’émisssion restreinte au carré.</td>
</tr>
<tr>
<td>pr,α</td>
<td>Pression acoustique de crête atténuée.</td>
</tr>
<tr>
<td>pr</td>
<td>Pression acoustique de crête.</td>
</tr>
<tr>
<td>pii</td>
<td>Intégrale d’intensité d’impulsion.</td>
</tr>
<tr>
<td>pii,α</td>
<td>Intégrale d’intensité d’impulsion atténuée.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Nombre d’impulsions par ligne d’exploration ultrasonique.</td>
</tr>
<tr>
<td>prr</td>
<td>Fréquence de répétition de l’impulsion.</td>
</tr>
<tr>
<td>srr</td>
<td>Fréquence de répétition des explorations.</td>
</tr>
<tr>
<td>IT</td>
<td>Indice thermique.</td>
</tr>
<tr>
<td>ITO</td>
<td>Indice thermique du tissu osseux.</td>
</tr>
<tr>
<td>ITC</td>
<td>Indice thermique des os du crâne.</td>
</tr>
<tr>
<td>ITM</td>
<td>Indice thermique des tissus mous.</td>
</tr>
<tr>
<td>zb</td>
<td>Profondeur pour ITO.</td>
</tr>
<tr>
<td>zIM</td>
<td>Profondeur pour l’indice mécanique.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Profondeur pour l’intégrale crête sur l’impulsion de l’intensité.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Profondeur pour l’intégrale crête sur l’impulsion de l’intensité atténuée.</td>
</tr>
</tbody>
</table>
Tableau 66 : Termes utilisés dans les tableaux de puissance acoustique

<table>
<thead>
<tr>
<th>Terme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{sii}</td>
<td>Profondeur pour la somme crête des intégrales sur l’impulsion de l’intensité.</td>
</tr>
<tr>
<td>$Z_{sii,\alpha}$</td>
<td>Profondeur pour la somme crête des intégrales sur l’impulsion de l’intensité atténuée.</td>
</tr>
<tr>
<td>Z_{S}</td>
<td>Profondeur pour ITM.</td>
</tr>
</tbody>
</table>

Glossaire (SonoSite Edge II)

Le terme IMT a été retiré de la liste des abréviations du guide d’utilisation du SonoSite Edge II. La modification apparaîtra lors de la prochaine mise à jour.
Tableaux de puissance acoustique
Errata corrige al manuale dell’utente di SonoSite Edge II e SonoSite SII

Introduzione ... 378
Convenzioni della documentazione .. 378
Assistenza ... 378
Assistenza (SonoSite Edge II) .. 379
Operazioni preliminari ... 379
Usi previsti .. 379
Impostazione del sistema ... 379
Impostazioni di connettività (SonoSite SII) ... 379
Configurazione della connettività (SonoSite Edge II) .. 379
Impostazioni dello Stato della rete .. 380
Acquisizione di immagini ... 380
Modalità di acquisizione delle immagini e tipi di esame disponibili per trasduttore (SonoSite SII) 380
Misurazioni e calcoli (SonoSite SII) .. 380
Calcoli generali .. 380
Riferimenti di misurazione (SonoSite SII) .. 381
Precisione delle misurazioni .. 382
Terminologia e pubblicazioni relative alle misurazioni .. 382
Pulizia e disinfezione ... 383
Usi previsti .. 379
Sicurezza ... 383
Sicurezza clinica .. 383
Compatibilità elettromagnetica .. 384
Trasmissione wireless ... 386
Dongle USB wireless (Panda) ... 386
Modulo wireless e di sicurezza (Laird) ... 387
Simboli delle etichette .. 399
Caratteristiche tecniche .. 408
Trasduttori supportati (SonoSite SII) .. 408
Norme ... 409
Norme di sicurezza elettromeccanica .. 409
Uscita acustica ... 409
Principio ALARA .. 409
Applicazione del principio ALARA.. 409
Controlli diretti .. 410
Visualizzazione dell’uscita .. 410
Documenti di riferimento correlati .. 410
Misurazione dell’uscita acustica .. 411
Termini utilizzati nelle tabelle dell’uscita acustica ... 469
Glossario (SonoSite Edge II) ... 470
Introduzione

Convenzioni della documentazione

Nel documento vengono utilizzate le seguenti convenzioni:

- Le note di **AVVERTENZA** descrivono le precauzioni necessarie per evitare lesioni o il decesso.
- Le note di **Attenzione** descrivono le precauzioni necessarie per evitare danni ai prodotti.
- Una **Nota** fornisce ulteriori informazioni.
- Le fasi numerate o contrassegnate con una lettera vanno eseguite nell’ordine specificato.
- Gli elenchi puntati presentano le informazioni in formato elenco; tuttavia, ciò non implica necessariamente una sequenza.
- Le procedure che includono un’unica operazione cominciano con ◆.

Per una descrizione dei simboli delle etichette presenti sul prodotto, consultare “Simboli delle etichette” nel manuale dell’utente.

Assistenza

Per assistenza tecnica, contattare FUJIFILM SonoSite come segue:

<table>
<thead>
<tr>
<th>Telefono (Stati Uniti o Canada)</th>
<th>+1-877-657-8118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telefono (altri Paesi)</td>
<td>+1-425-951-1330, oppure rivolgersi al rappresentante locale</td>
</tr>
<tr>
<td>Fax</td>
<td>+1-425-951-6700</td>
</tr>
<tr>
<td>E-mail</td>
<td>ffss-service@fujifilm.com</td>
</tr>
<tr>
<td>Internet</td>
<td>www.sonosite.com</td>
</tr>
</tbody>
</table>

Centro di assistenza per l’Europa
Principale: +31 20 751 2020
Assistenza in lingua inglese: +44 14 6234 1151
Assistenza in lingua francese: +33 1 8288 0702
Assistenza in lingua tedesca: +49 69 8088 4030
Assistenza in lingua italiana: +39 02 9475 3655
Assistenza in lingua spagnola: +34 91 123 8451

Centro di assistenza per l’Asia
+65 6380-5581

Stampato negli Stati Uniti.
Assistenza (SonoSite Edge II)

Le informazioni seguenti sono state corrette nel manuale dell’utente di SonoSite Edge II; la revisione sarà effettuata nel prossimo aggiornamento.

E-mail ffss-service@fujifilm.com

Operazioni preliminari

Il contenuto seguente non è stato incluso oppure non era corretto nei manuali dell’utente del sistema SonoSite Edge II e SonoSite SII; le revisioni saranno effettuate nel prossimo aggiornamento.

Usi previsti

Acquisizione di immagini della prostata

Il sistema consente di valutare l’eventuale presenza di patologie a livello della prostata e delle strutture anatomiche circostanti.

Acquisizione di immagini superficiali

Il sistema consente di valutare l’eventuale presenza di patologie a livello di mammelle, tiroide, testicoli, linfonodi, ernie, strutture muscoloscheletriche, tessuti molli, spina dorsale, strutture oculari e strutture anatomiche circostanti. Il sistema può essere utilizzato per fornire una guida ecografica per procedure di biopsia e drenaggio, posizionamento della linea vascolare e blocchi dei nervi periferici.

Impostazione del sistema

Impostazioni di connettività (SonoSite SII)

Tutti i riferimenti a PDAS devono essere modificati in SiteLink nel manuale dell’utente del sistema SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.

Configurazione della connettività (SonoSite Edge II)

Il riferimento seguente è stato aggiornato nel manuale dell’utente di SonoSite Edge II; la revisione sarà effettuata nel prossimo aggiornamento.

Attivare il collegamento wireless

مصطلح: **Vedere Impostazione di una rete wireless.**
Impostazioni dello Stato della rete

Se la schermata Network Status (Stato della rete) mostra un messaggio di errore dispositivo wireless, la password di rete potrebbe essere scaduta. Assicurarsi di avere una password di rete aggiornata prima di collegare il dispositivo wireless.

Acquisizione di immagini

Il trasduttore C8x è compatibile con la guida ago sui sistemi SonoSite Edge II e SonoSite SII.

Modalità di acquisizione delle immagini e tipi di esame disponibili per trasduttore (SonoSite SII)

Le seguenti note a piè di pagina non erano presenti nella Tabella 4-5. Modalità di acquisizione delle immagini ed esami disponibili per trasduttore nel manuale dell’utente del sistema SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.

aAbbreviazioni del tipo di esame: Abd = Addome, Art = Arterioso, Bre = Seno, Crd = Cardiaco, Gyn = Ginecologico, Msk = Muscoloscheletrico, Neo = Neonatale, Nrv = Nervo, OB = Ostetrico, Oph = Oftalmico, Pro = Prostata, SmP = Parti piccole, Spn = Spina dorsale, Sup = Superficiale, Ven = Venoso.

bLe impostazioni di ottimizzazione per l’acquisizione di immagini 2D sono Res, Gen e Pen.

cLe impostazioni di ottimizzazione per l’acquisizione di immagini Color Power Doppler (CPD) e Color sono bassa, media e alta (sensibilità del flusso) con un range di impostazioni FRI per Color a seconda dell’impostazione selezionata.

Misurazioni e calcoli (SonoSite SII)

Calcoli generali

Calcolo del volume

AVVERTENZE

› Per evitare errori nei calcoli, verificare che le informazioni sul paziente, la data e l’ora siano impostate correttamente.

› Per prevenire errori diagnostici o danneggiare gli esiti del paziente, iniziare un nuovo modulo paziente prima di iniziare un nuovo esame ed eseguire i calcoli. Iniziando un nuovo modulo paziente si cancelleranno i precedenti dati del paziente. Se il modulo non viene preventivamente cancellato i vecchi dati del paziente si mescoleranno con quelli nuovi.

Il calcolo del volume implica tre misurazioni di distanza 2D: D1, D2 e D3. Una volta salvate tutte le misurazioni, nella cartella del paziente e sullo schermo apparirà il risultato.
Il calcolo del volume è disponibile nei seguenti tipi di esame: Addome, Arterioso, Mammella, Ginecologico, Muscoloscheletrico, Nervi, Parti piccole, Venoso e Superficiale.

Calcolo del volume

Esegui la seguente procedura per ciascuna immagine da misurare:

1. Su un’immagine 2D congelata, toccare **Calcs** (Calcoli).

2. Compiere la seguente operazione per ciascuna misurazione da effettuare:
 a. Selezionare il nome della misurazione dal menu dei calcoli in **Volume**.

 Se **Volume** non è disponibile in un esame Gyn, selezionare **Gyn** (Gin), quindi selezionare **Volume**.
 b. Utilizzando il tastierino o il touchscreen, posizionare i calibri.
 c. Toccare **Save Calc** (Salva calc.) per salvare il calcolo.

 Accanto a ogni misurazione salvata appare un segno di spunta.

3. Per salvare un’immagine del calcolo finito, toccare 📸.

4. Toccare **Back** (Indietro) per uscire dal menu Calcoli.

Riferimenti di misurazione (SonoSite SII)

Le seguenti informazioni non sono state incluse nel manuale dell’utente del sistema SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.
Precisione delle misurazioni

Tabella 1: Intervallo e precisione della misurazione e del calcolo in M Mode

<table>
<thead>
<tr>
<th>Precisione e intervallo della misurazione in M Mode</th>
<th>Tolleranza del sistema</th>
<th>Precisione per</th>
<th>Metodo di test</th>
<th>Intervallo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza</td>
<td>< ± 2% più 1% del fondo scala(^{a})</td>
<td>Acquisizione</td>
<td>Fantoccio(^{b})</td>
<td>0 – 26 cm</td>
</tr>
<tr>
<td>Ora</td>
<td>< ± 2% più 1% del fondo scala(^{c})</td>
<td>Acquisizione</td>
<td>Fantoccio(^{d})</td>
<td>0,01 – 10 s</td>
</tr>
<tr>
<td>Frequenza cardiaca</td>
<td>< ± 2% più (fondo scala(^{c}) * frequenza cardiaca/100)%</td>
<td>Acquisizione</td>
<td>Fantoccio(^{d})</td>
<td>5 – 923 bpm</td>
</tr>
</tbody>
</table>

\(^{a}\)La scala completa per la distanza implica la profondità massima dell’immagine.

\(^{b}\)È stata usata una simulazione da modello RMI 413a, con attenuazione pari a 0,7 dB/cm MHz.

\(^{c}\)La scala completa per il tempo include il tempo totale visualizzato nell’immagine in scorrimento.

\(^{d}\)È stata utilizzata un’apparecchiatura di prova speciale FUJIFILM SonoSite.

Terminologia e pubblicazioni relative alle misurazioni

Riferimenti generali

Angolazione anca/Rapporto d:D

Riduzione area percentuale

Riduzione area % = \([1 - A2(cm^2)/A1(cm^2)]\) * 100

dove:
A1 = Area originale del vaso in cm quadrati
A2 = Area ridotta del vaso in cm quadrati
Riduzione diametro percentuale

\[
\text{Diametro di riduzione } \% = \left[1 - \frac{D_2(\text{cm})}{D_1(\text{cm})}\right] \times 100
\]

dove:
\[
D_1 = \text{Diametro originale del vaso in cm}
\]
\[
D_2 = \text{Diametro ridotto del vaso in cm}
\]

Pulizia e disinfezione

Il seguente sito Web è stato corretto nei manuali dell’utente di SonoSite Edge II e SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.

www.sonosite.com/products/transducers

Il piede di pagina seguente è stato aggiornato nelle tabelle relative a pulizia e disinfezione.

Per un elenco più completo dei detergenti e disinfettanti approvati, fare riferimento allo strumento relativo a detergenti e disinfezione disponibile all’indirizzo www.sonosite.com/support/cleaners-disinfectants.

Sicurezza

Sicurezza clinica

La seguente avvertenza è stata aggiornata nei manuali dell’utente di SonoSite Edge II e SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.

AVVERTENZA

FUJIFILM SonoSite non raccomanda l’uso di dispositivi elettromedicali ad alta frequenza (AF) in prossimità dei propri sistemi. Le apparecchiature FUJIFILM SonoSite non sono state validate per l’uso con procedure o dispositivi elettrochirurgici AF. L’uso di dispositivi elettrochirurgici AF in prossimità dei propri sistemi potrebbe determinare un comportamento anomalo del sistema o il suo arresto.

Per evitare il rischio di ustioni, non utilizzare il trasduttore con apparecchiature chirurgiche AF. Tale pericolo può sussistere in caso di difetti nel collegamento dell’elettrodo neutro chirurgico AF.
Compatibilità elettromagnetica

Il sistema per ecografia è stato testato ed è risultato conforme ai limiti di compatibilità elettromagnetica (EMC) per i dispositivi medicali secondo le norme IEC 60601-1-2:2007 e IEC 60601-1-2:2014. Il sistema per ecografia è idoneo per l’uso in un ambiente sanitario professionale. Le apparecchiature chirurgiche AF attive causano disturbi elettromagnetici che potrebbero interferire con il funzionamento del sistema per ecografia. Il sistema per ecografia non deve essere messo in funzione all’interno di una sala con schermatura RF nella quale si svolge una risonanza magnetica, poiché questa può produrre disturbi elettromagnetici elevati in grado potenzialmente di interferire con il funzionamento del sistema per ecografia. Tali limiti sono stati stabiliti per garantire una protezione ragionevole dalle interferenze dannose in un tipico sistema medico.
Attenzioni

- Le apparecchiature elettromedicali richiedono precauzioni speciali in relazione alle EMC e devono essere installate e messe in funzione in conformità alle istruzioni fornite. Le apparecchiature di comunicazione RF portatili (comprese le periferiche, come i cavi dell’antenna e le antenne esterne) devono essere utilizzate a non meno di 30 cm di distanza dal sistema per ecografia, compresi i cavi specificati da FUJIFILM SonoSite. Le apparecchiature di comunicazione RF portatili e mobili possono influenzare il sistema per ecografia. Le interferenze elettromagnetiche (EMI) da altre apparecchiature o fonti di interferenza possono dare luogo all’interruzione delle prestazioni del sistema per ecografia. Prove di interruzione possono essere la riduzione della qualità o la distorsione delle immagini, le letture anomale, lo spegnimento delle apparecchiature o altri tipi di funzionamento anomalo. In tal caso, ispezionare la sede di lavoro per individuare l’origine del disturbo e adottare le seguenti misure per eliminarla.
 - Spegnere e accendere le apparecchiature adiacenti per isolare quella che causa il disturbo.
 - Riposizionare o riorientare l’apparecchiatura fonte di interferenze.
 - Aumentare la distanza tra l’apparecchiatura da cui provengono le interferenze e il sistema per ecografia.
 - Gestire correttamente gli apparecchi in funzionamento a frequenze vicine a quelle utilizzate dal sistema per ecografia.
 - Rimuovere i dispositivi particolarmente sensibili alle EMI.
 - Ridurre la potenza delle fonti interne all’edificio (ad esempio i sistemi cercapersone).
 - Etichettare i dispositivi sensibili alle EMI.
 - Istruire il personale della struttura a individuare eventuali problemi correlati alle EMI.
 - Eliminare o ridurre le EMI con soluzioni tecniche (ad esempio schermature).
 - Limitare l’uso dei dispositivi di comunicazione del personale (telefoni cellulari, computer) nelle aree con dispositivi sensibili alle EMI.
 - Condividere le informazioni relative alle EMI con altri, in particolare quando si valuta l’acquisto di nuove apparecchiature che potrebbero generare EMI.
 - Acquistare dispositivi medicali conformi alle norme IEC 60601-1-2 EMC.

- Non impilare altre apparecchiature sul sistema per ecografia, né utilizzare altri dispositivi in sua prossimità o in posizione a esso adiacente. Nel caso in cui sia assolutamente necessario impilare o usare altra apparecchiatura in prossimità del sistema per ecografia, monitorare quest’ultimo per verificare il corretto funzionamento.
Compatibilità elettromagnetica

Trasmissione wireless

I sistemi per ecografia SonoSite Edge II e SII implementano due soluzioni wireless.

- Il Dongle USB wireless (Panda) è un adattatore wireless che si collega alla porta USB:
 - Sul lato destro del sistema per ecografia Edge II.
 - Sulla parte posteriore in alto del sistema per ecografia SII.
- Il modulo wireless e di sicurezza (Laird) è un modulo da installare:
 - Sul coperchio del sistema per ecografia Edge II, da collegare poi al sistema tramite un cavo USB ad angolo retto
 - Sul braccio del supporto per trasduttore del sistema per ecografia SII, da collegare poi al sistema tramite un cavo USB da 30 cm

Per informazioni sulla trasmissione di ciascuna soluzione, fare riferimento alle informazioni seguenti.

Dongle USB wireless (Panda)

Il dongle USB wireless utilizza le bande di frequenza industriale, scientifica e medica (ISM) da 2,412 a 2,4835 GHz, in base alla normativa del proprio paese. Il dongle implementa le seguenti modalità di trasmissione:

- IEEE 802.11b con Direct Sequence Spread Spectrum (DSSS) a 19 dBm: velocità di picco: 54 Mbps, throughput di picco: 27 Mbps
- IEEE 802.11g con Orthogonal Frequency Division Multiplexing (OFDM) a 16 dBm: velocità di picco: 54 Mbps, throughput di picco: 27 Mbps
- IEEE 802.11n con Orthogonal Frequency Division Multiplexing (OFDM) a 15 dBm:
 - 1T1R. Velocità di picco: 150 Mbps, throughput di picco: 90 Mbps
 - 1T2R. Velocità di picco: 300 Mbps, throughput di picco: Rx 160 Mbps
 - 2T2R. Velocità di picco: 300 Mbps, throughput di picco: Rx 260 Mbps

Nota
Le caratteristiche delle emissioni dei sistemi per ecografia SonoSite Edge II e SII li rendono idonei per l’uso in aree industriali e ospedali (CISPR 11, Classe A). Se utilizzato in un ambiente residenziale (per il quale solitamente è richiesta la norma CISPR 11, Classe B), il sistema per ecografia potrebbe non fornire la protezione adeguata necessaria per i servizi di comunicazione a radiofrequenza. Potrebbe essere necessario adottare misure di mitigazione, ad esempio riorientare o riposizionare l’apparecchiatura.
Modulo wireless e di sicurezza (Laird)

Il modulo wireless e di sicurezza utilizza le bande di frequenza industriale, scientifica e medica (ISM) da 1,400 a 2,4835 GHz e da 5,100 a 5,800 GHz. Il modulo implementa quattro differenti modalità di trasmissione:

- IEEE 802.11a con Orthogonal Frequency Division Multiplexing (OFDM) a 11 dBm ± 2 dBm a 54 Mbps
- IEEE 802.11b con Direct Sequence Spread Spectrum (DSSS) a 16 dBm ± 2,0 dBm a 11 Mbps
- IEEE 802.11g con Orthogonal Frequency Division Multiplexing (OFDM) a 13 dBm ± 2,0 dBm a 54 Mbps
- IEEE 802.11n con Orthogonal Frequency Division Multiplexing (OFDM) a 12 dBm ± 2,0 dBm (802.11gn) a MCS7

Accessori e periferiche compatibili (SonoSite Edge II)

FUJIFILM SonoSite ha testato il sistema per ecografia SonoSite Edge II insieme ai seguenti accessori e periferiche e ha dimostrato la propria conformità ai requisiti delle norme IEC 60601-1-2:2007 e IEC 60601-1-2:2014.

Con SonoSite Edge II è possibile utilizzare questi accessori FUJIFILM SonoSite e le periferiche di terze parti.

AVVERTENZE

- L’uso degli accessori con sistemi medici diversi dal sistema per ecografia Edge può determinare un aumento delle emissioni o una diminuzione dell’immunità del sistema medico.
- L’uso di accessori diversi da quelli specificati può causare un aumento delle emissioni o una diminuzione dell’immunità del sistema per ecografia.
- Il sistema per ecografia non deve essere utilizzato in un edificio provato o tramite un collegamento alla rete elettrica pubblica.

Tabella 2: Accessori e periferiche compatibili con il sistema per ecografia Edge II

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Lunghezza massima del cavo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trasduttore C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore rC60xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HSL25x</td>
<td>2,3 m</td>
</tr>
</tbody>
</table>
Tabella 2: Accessori e periferiche compatibili con il sistema per ecografia Edge II (segue)

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Lunghezza massima del cavo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trasduttore ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L25x standard/corazzato</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Trasduttore L38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L52xa</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Trasduttore P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore rP19x standard/corazzato</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore TEEExi</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Scanner per codici a barre</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batteria per PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Unità batteria</td>
<td>—</td>
</tr>
<tr>
<td>PowerPack batteria</td>
<td>—</td>
</tr>
<tr>
<td>Stampante in bianco e nero</td>
<td>—</td>
</tr>
<tr>
<td>Cavo per stampante in bianco e nero</td>
<td>1 m</td>
</tr>
<tr>
<td>Stampante a colori</td>
<td>—</td>
</tr>
<tr>
<td>Cavo per stampante a colori</td>
<td>1 m</td>
</tr>
<tr>
<td>Cavo per stampante video</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cavi elettrodi ECG</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Modulo ECG</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cavo secondario per ECG</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Stazione SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Supporto SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>Interruttore a pedale</td>
<td>3 m</td>
</tr>
<tr>
<td>Petite mouse</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cavo di alimentazione (sistema)</td>
<td>3 m</td>
</tr>
<tr>
<td>Alimentatore con cavo CC</td>
<td>2 m</td>
</tr>
</tbody>
</table>
Tabella 2: Accessori e periferiche compatibili con il sistema per ecografia Edge II (segue)

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Lunghezza massima del cavo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentatore cavo CA</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
<tr>
<td>Modulo di connessione triplo per trasduttori</td>
<td>—</td>
</tr>
<tr>
<td>Adattatore wireless USB</td>
<td>—</td>
</tr>
</tbody>
</table>

Per i trasduttori, la lunghezza massima del cavo è misurata tra i fermacavo. Le lunghezze stabilite non includono le lunghezze di cavo nelle seguenti posizioni: al di sotto dei fermacavo, all’interno del perimetro del trasduttore o all’interno del connettore del trasduttore.

aIl trasduttore L52x è esclusivamente per uso veterinario.

Accessori e periferiche compatibili (SonoSite SII)

FUJIFILM SonoSite ha collaudato il sistema per ecografia SonoSite SII con i seguenti accessori e periferiche e ha dimostrato la sua conformità ai requisiti IEC 60601-1-2:2007 e IEC 60601-1-2:2014.

Con il sistema per ecografia SonoSite SII è possibile utilizzare questi accessori FUJIFILM SonoSite e le periferiche di terze parti.

AVVERTENZE

L’uso degli accessori con sistemi medicali diversi dal sistema per ecografia SonoSite SII può determinare un aumento delle emissioni o una diminuzione dell’immunità del sistema medicale.

L’uso di accessori diversi da quelli specificati può causare un aumento delle emissioni o una diminuzione dell’immunità del sistema per ecografia.

Tabella 3: Accessori e periferiche compatibili con il sistema per ecografia SonoSite SII

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Lunghezza massima del cavo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trasduttore C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore rC60xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Descrizione</td>
<td>Lunghezza massima del cavo</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Trasduttore HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Trasduttore ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L25x standard/corazzato</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Trasduttore L38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Trasduttore P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore rP19x standard/corazzato</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Scanner per codici a barre</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Batteria per PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Unità batteria</td>
<td>—</td>
</tr>
<tr>
<td>PowerPack batteria</td>
<td>—</td>
</tr>
<tr>
<td>Stampante in bianco e nero</td>
<td>—</td>
</tr>
<tr>
<td>Cavo per stampante in bianco e nero</td>
<td>1 m</td>
</tr>
<tr>
<td>Cavo per controllo stampante in bianco e nero</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cavo video stampante in bianco e nero</td>
<td>1,9 m</td>
</tr>
<tr>
<td>Interruttore a pedale</td>
<td>3 m</td>
</tr>
<tr>
<td>Prolunga USB per interruttore a pedale</td>
<td>2 m</td>
</tr>
<tr>
<td>Supporto SonoSite SII</td>
<td>—</td>
</tr>
<tr>
<td>Cavo di alimentazione (sistema)</td>
<td>3 m</td>
</tr>
<tr>
<td>Alimentatore con cavo CC</td>
<td>2 m</td>
</tr>
<tr>
<td>Alimentatore cavo CA</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
<tr>
<td>Adattatore wireless USB</td>
<td>—</td>
</tr>
<tr>
<td>Memory stick USB</td>
<td>—</td>
</tr>
</tbody>
</table>

Per i trasduttori, la lunghezza massima del cavo è misurata tra i fermacavo. Le lunghezze stabilite non includono le lunghezze di cavo nelle seguenti posizioni: al di sotto dei fermacavo, all’interno del perimetro del trasduttore o all’interno del connettore del trasduttore.
Dichiarazione del produttore

Le tabelle in questa sezione indicano la destinazione d’uso e i livelli di conformità EMC del sistema. Per garantire prestazioni ottimali, assicurarsi che il sistema venga utilizzato negli ambienti descritti in tabella.

Il sistema è progettato per l’utilizzo in un ambiente dalle caratteristiche elettromagnetiche specificate di seguito.

<table>
<thead>
<tr>
<th>Test di emissione</th>
<th>Conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissioni RF CISPR 11</td>
<td>Gruppo 1</td>
<td>I sistemi per ecografia Edge II e SII utilizzano energia a RF solo per il funzionamento interno. Pertanto, le emissioni RF prodotte da tali sistemi sono molto basse ed è improbabile che provochino interferenze alle apparecchiature adiacenti.</td>
</tr>
<tr>
<td>Emissioni RF CISPR 11</td>
<td>Classe A</td>
<td>I sistemi per ecografia Edge II e SII sono idonei per l’uso in tutti gli edifici diversi da quelli privati e quelli collegati direttamente alla rete di alimentazione pubblica a bassa tensione che rifornisce di corrente per uso privato.</td>
</tr>
<tr>
<td>Emissioni armoniche IEC 61000-3-2</td>
<td>Classe A</td>
<td></td>
</tr>
<tr>
<td>Oscillazioni della tensione/sfarfalli IEC 61000-3-3</td>
<td>Conforme</td>
<td></td>
</tr>
</tbody>
</table>
Il sistema è progettato per l’utilizzo in un ambiente dalle caratteristiche elettromagnetiche specificate di seguito.

Tabella 5: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scariche elettriostatiche (ESD) IEC 61000-4-2</td>
<td>± 2,0 kV, ± 4,0 kV, ± 6,0 kV contatto ± 2,0 kV, ± 4,0 kV, ± 8,0 kV aria</td>
<td>± 2,0 kV, ± 4,0 kV, ± 6,0 kV contatto ± 2,0 kV, ± 4,0 kV, ± 8,0 kV aria</td>
<td>I pavimenti devono essere in legno, cemento o piastrelle di ceramica. Se i pavimenti sono rivestiti di materiale sintetico, l’umidità relativa deve essere almeno del 30%.</td>
</tr>
<tr>
<td>Transitori elettrici veloci/burst IEC 61000-4-4</td>
<td>± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali</td>
<td>± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali</td>
<td>La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.</td>
</tr>
<tr>
<td>Sovracorrente IEC 61000-4-5</td>
<td>± 1 kV linea - linea ± 2 kV linea - terra</td>
<td>± 1 kV linea - linea ± 2 kV linea - terra</td>
<td>La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.</td>
</tr>
<tr>
<td>Cali di tensione, brevi interruzioni e variazioni della tensione sulle linee di ingresso dell’alimentazione e IEC 61000-4-11</td>
<td><5% (U_T) (>95% riduzione in (U_T)) per 0,5 cicli 40% (U_T) (60% di calo in (U_T)) per 5 cicli 70% (U_T) (30% di calo in (U_T)) per 25 cicli <5% (U_T) (>95% riduzione in (U_T)) per 5 s</td>
<td><5% (U_T) (>95% riduzione in (U_T)) per 0,5 cicli 40% (U_T) (60% di calo in (U_T)) per 5 cicli 70% (U_T) (30% riduzione in (U_T)) per 25 cicli <5% (U_T) (>95% riduzione in (U_T)) per 5 s</td>
<td>La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale. Se l’utente del sistema per ecografia FUJIFILM SonoSite richiede il funzionamento continuo durante le interruzioni dell’alimentazione elettrica di rete, è consigliabile alimentare il sistema per ecografia FUJIFILM SonoSite tramite un gruppo di continuità o una batteria.</td>
</tr>
</tbody>
</table>
Tabella 5: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo magnetico alla frequenza di alimentazione IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Se si verifica la distorsione delle immagini, potrebbe essere necessario allontanare il sistema per ecografia FUJIFILM SonoSite dalle fonti dei campi magnetici alla frequenza di alimentazione o installare una schermatura magnetica. I campi magnetici di frequenza di alimentazione devono essere misurati nel sito di installazione previsto in modo da assicurare che siano sufficientemente bassi.</td>
</tr>
</tbody>
</table>
| RF condotta IEC 61000-4-6 | 3 Vrms
Da 150 kHz a 80 MHz | 3 Vrms | Le apparecchiature di comunicazione a RF portatili e mobili devono essere utilizzate alla distanza consigliata dai componenti del sistema per ecografia FUJIFILM SonoSite, inclusi i cavi; tale distanza viene calcolata dall’equazione applicabile alla frequenza del trasmettitore. Distanza di separazione raccomandata $d = 1,2 \sqrt{P}$ |
Tabella 5: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
</table>
| RF irradiata IEC 61000-4-3 | 3 V/m Da 80 MHz a 2,5 GHz | 3 V/m Da 80 MHz a 2,5 GHz | $d = 1,2 \sqrt{P_{\text{da 80 MHz a 800 MHz}}}$ $d = 2,3 \sqrt{P_{\text{da 800 MHz a 2,5 GHz}}}$ Dove P è la potenza nominale di uscita massima del trasmettitore in Watt (10) in conformità alle specifiche del produttore e d è la distanza di separazione raccomandata in metri (m). L’intensità di campo da trasmettidori RF fissi, come determinato da un’indagine elettromagnetica del sito, deve essere inferiore al livello di conformità in ogni gamma di frequenza. È possibile che si verifichino interferenze in prossimità di apparecchiature che recano il simbolo seguente: *(IEC 60417 N. 417-IEC-5140: “Fonte di radiazione non ionizzante”)*

Nota

U_T è la tensione alternata di rete prima dell’applicazione del livello di test. A 80 MHz e 800 MHz, si applica la gamma di frequenze più alta. Queste linee guida potrebbero non essere applicabili in tutte le situazioni. La propagazione elettromagnetica è influenzata dall’assorbimento e dal riflesso da parte di strutture, oggetti e persone.
a. Non è possibile prevedere teoricamente con precisione l’intensità dei campi generati dai trasmettitori fissi quali stazioni base per telefoni a radiofrequenza (cellulari/cordless) e sistemi terrestri mobili di radiocomunicazione, sistemi per radioamatori, antenne radio AM ed FM e TV. Per valutare l’ambiente elettromagnetico generato da trasmettitori RF fissi, deve essere considerata un’indagine elettromagnetica del sito. Se l’intensità di campo misurata nel luogo in cui viene utilizzato il sistema per ecografia FUJIFILM SonoSite supera il livello di conformità RF applicabile sopra indicato, è necessario sorvegliare il sistema per ecografia FUJIFILM SonoSite in modo da garantire che il funzionamento sia corretto. Se si osservano prestazioni anomale, possono essere necessarie misure aggiuntive, ad esempio riorientare o riposizionare il sistema per ecografia FUJIFILM SonoSite.
b. In una gamma di frequenze compresa tra 150 kHz e 80 MHz, le intensità di campo devono essere inferiori a 3 V/m.

Tabella 5: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
</table>
| Scariche elettrostatiche (ESD) IEC 61000-4-2 | ± 8,0 kV, contatto ± 2,0 kV, ± 4,0 kV, ± 8,0 kV aria, ± 15 kV | ± 8,0 kV, ± 4,0 kV, ± 8,0 kV aria, ± 15 kV | I pavimenti devono essere in legno, cemento o piastrelle di ceramica. Se i pavimenti sono rivestiti di materiale sintetico, l’umidità relativa deve essere almeno del 30%.
| Transitori elettrici veloci/burst IEC 61000-4-4 | ± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali | ± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali | La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.
| Sovraccorrente IEC 61000-4-5 | ± 1 kV linea - linea ± 2 kV linea - terra | ± 1 kV linea - linea ± 2 kV linea - terra | La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.

Tabella 6: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
</table>
| Scariche elettrostatiche (ESD) IEC 61000-4-2 | ± 8,0 kV, contatto ± 2,0 kV, ± 4,0 kV, ± 8,0 kV aria, ± 15 kV | ± 8,0 kV, ± 4,0 kV, ± 8,0 kV aria, ± 15 kV | I pavimenti devono essere in legno, cemento o piastrelle di ceramica. Se i pavimenti sono rivestiti di materiale sintetico, l’umidità relativa deve essere almeno del 30%.
| Transitori elettrici veloci/burst IEC 61000-4-4 | ± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali | ± 2 kV sulla rete di alimentazione ± 1 kV sulle linee dei segnali | La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.
| Sovraccorrente IEC 61000-4-5 | ± 1 kV linea - linea ± 2 kV linea - terra | ± 1 kV linea - linea ± 2 kV linea - terra | La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale.
Tabella 6: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caldi di tensione, brevi interruzioni e variazioni della tensione sulle linee di ingresso dell’alimentazione e IEC 61000-4-11</td>
<td>0% U_T per 0,5 cicli 0% U_T per 5 cicli 70% U_T (30% di calo in U_T) per 500 msec <5% U_T (>95% riduzione in U_T) per 5 s</td>
<td>0% U_T per 0,5 cicli 0% U_T per 5 cicli 70% U_T (30% riduzione in U_T) per 500 msec <5% U_T (>95% riduzione in U_T) per 5 s</td>
<td>La qualità dell’alimentazione della rete deve essere pari a quella di un tipico ambiente ospedaliero o commerciale. Se l’utente del sistema per ecografia FUJIFILM SonoSite richiede il funzionamento continuo durante le interruzioni dell’alimentazione elettrica di rete, è consigliabile alimentare il sistema per ecografia FUJIFILM SonoSite tramite un gruppo di continuità o una batteria.</td>
</tr>
<tr>
<td>Campo magnetico alla frequenza di alimentazione IEC 61000-4-8</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>Se si verifica la distorsione delle immagini, potrebbe essere necessario allontanare il sistema per ecografia FUJIFILM SonoSite dalle fonti dei campi magnetici alla frequenza di alimentazione o installare una schermatura magnetica. I campi magnetici di frequenza di alimentazione devono essere misurati nel sito di installazione previsto in modo da assicurare che siano sufficientemente bassi.</td>
</tr>
<tr>
<td>RF condotta IEC 61000-4-6</td>
<td>3 Vrms Da 150 kHz a 80 MHz 6 Vrms nelle bande ISM</td>
<td>3 Vrms</td>
<td>Le apparecchiature di comunicazione a RF portatili e mobili devono essere utilizzate alla distanza consigliata dai componenti del sistema per ecografia FUJIFILM SonoSite, inclusi i cavi; tale distanza viene calcolata dall’equazione applicabile alla frequenza del trasmettitore. Distanza di separazione raccomandata $d = 1,2 \sqrt{P}$</td>
</tr>
</tbody>
</table>

400 Dichiarazione del produttore
Tabella 6: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
</table>
| RF irradiata IEC 61000-4-3 | 3 V/m Da 80 MHz a 2,7 GHz | 3 V/m Da 80 MHz a 2,7 GHz | $d = 1,2 \sqrt{P}$ da 80 MHz a 800 MHz
$d = 2,3 \sqrt{P}$ da 800 MHz a 2,5 GHz
Dove P è la potenza nominale di uscita massima del trasmettitore in Watt (10) in conformità alle specifiche del produttore e d è la distanza di separazione raccomandata in metri (m).
L’intensità di campo da trasmettitori RF fissi, come determinato da un’indagine elettromagnetica del sito, deve essere inferiore al livello di conformità in ogni gamma di frequenza.
È possibile che si verifichino interferenze in prossimità di apparecchiature che recano il simbolo seguente:
(IEC 60417 N. 417-IEC-5140: “Fonte di radiazione non ionizzante”) |

Vicinanza dei campi dalle apparecchiature di comunicazione wireless
Secondo 60601-1-2:2014, Tabella 9
Secondo 60601-1-2:2014, Tabella 9

Nota
U_T è la tensione alternata di rete prima dell’applicazione del livello di test.
A 80 MHz e 800 MHz, si applica la gamma di frequenze più alta.
Queste linee guida potrebbero non essere applicabili in tutte le situazioni. La propagazione elettromagnetica è influenzata dall’assorbimento e dal riflesso da parte di strutture, oggetti e persone.
Accessori e periferiche compatibili

La seguente avvertenza è stata aggiunta ai manuali dell’utente di SonoSite Edge II e SonoSite SII; la revisione sarà effettuata nel prossimo aggiornamento.

AVVERTENZA

Se al sistema sono collegate periferiche, assicurarsi che sistema e periferiche siano collegate allo stesso circuito di derivazione della rete a corrente alternata.

Tabella 6: Dichiarazione del produttore: immunità elettromagnetica secondo il requisito IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Test di immunità</th>
<th>Livello di test IEC 60601</th>
<th>Livello di conformità</th>
<th>Ambiente elettromagnetico</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Non è possibile prevedere teoricamente con precisione l’intensità dei campi generati dai trasmettitori fissi quali stazioni base per telefoni a radiofrequenza (cellulari/cordless) e sistemi terrestri mobili di radiocomunicazione, sistemi per radioamatori, antenne radio AM ed FM e TV. Per valutare l’ambiente elettromagnetico generato da trasmettitori RF fissi, deve essere considerata un’indagine elettromagnetica del sito. Se l’intensità di campo misurata nel luogo in cui viene utilizzato il sistema per ecografia FUJIFILM SonoSite supera il livello di conformità RF applicabile sopra indicato, è necessario sorvegliare il sistema per ecografia FUJIFILM SonoSite in modo da garantire che il funzionamento sia corretto. Se si osservano prestazioni anomale, possono essere necessarie misure aggiuntive, ad esempio riorientare o riposizionare il sistema per ecografia FUJIFILM SonoSite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. In una gamma di frequenze compresa tra 150 kHz e 80 MHz, le intensità di campo devono essere inferiori a 3 V/m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenzione FCC: questa apparecchiatura è stata testata ed è stata trovata conforme ai limiti per un dispositivo digitale di Classe A, ai sensi del paragrafo 15 delle norme FCC. Questi limiti sono stati concepiti per fornire una protezione ragionevole dalle interferenze dannose quando l’apparecchiatura viene utilizzata in un ambiente commerciale. Quest’apparecchiatura genera, usa e può irradiare energia a radiofrequenza e, se non installata e usata conformemente al manuale di istruzioni, potrebbe causare interferenza dannosa alle comunicazioni radio. È probabile che l’utilizzo di questa apparecchiatura in un’area residenziale provochi interferenze dannose; in tal caso, l’utente dovrà provvedere a correggere le interferenze a proprie spese.
Tabella 7: Simboli delle etichette standard

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Simbolo]</td>
<td>Radiazioni elettromagnetiche non ionizzanti</td>
<td>IEC 60601-1-2:2007 Apparecchiature elettromedicali - Parte 1-2: Requisiti generali per la sicurezza di base e le prestazioni essenziali – Norma collaterale: compatibilità elettromagnetica</td>
<td>5.1.1</td>
<td>Indica livelli generalmente elevati e potenzialmente pericolosi di radiazioni non ionizzanti oppure indica apparecchiature o sistemi, ad es. nell’area elettromedicale, che includono trasmettitori RF o che applicano intenzionalmente energia elettromagnetica RF per la diagnosi o il trattamento</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Rappresentante autorizzato nella Comunità Europea</td>
<td>ISO 15223-1 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite.</td>
<td>5.1.2</td>
<td>Indica il rappresentante autorizzato nella Comunità Europea</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Numero di serie</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.1.7</td>
<td>Indica il numero di serie del produttore in modo da poter identificare un dispositivo medico specifico</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numero di catalogo</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.1.6</td>
<td>Indica il numero di catalogo del produttore in modo da poter identificare il dispositivo medico</td>
</tr>
<tr>
<td></td>
<td>Attenzione</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.4.4</td>
<td>Indica la necessità dell’operatore di consultare le istruzioni per l’uso relative a importanti informazioni sulla sicurezza quali avvertenze e precauzioni che, per una serie di ragioni, non è possibile riportare sul dispositivo medico stesso</td>
</tr>
<tr>
<td></td>
<td>Fragile, maneggiare con cura</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.3.1</td>
<td>Indica un dispositivo medico che è possibile rompere o danneggiare se non maneggiato con cura</td>
</tr>
<tr>
<td></td>
<td>Mantenere asciutto</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.3.4</td>
<td>Indica un dispositivo medico che è necessario proteggere dall’umidità</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limitazione temperatura</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.3.7</td>
<td>Indica i limiti di temperatura a cui è possibile esporre il dispositivo medico in sicurezza</td>
</tr>
<tr>
<td></td>
<td>Limitazione pressione atmosferica</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.3.9</td>
<td>Indica la gamma di pressione atmosferica a cui è possibile esporre il dispositivo medico in sicurezza</td>
</tr>
<tr>
<td></td>
<td>Limiti dell’umidità</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.3.8</td>
<td>Indica la gamma di umidità a cui è possibile esporre il dispositivo medico in sicurezza</td>
</tr>
<tr>
<td></td>
<td>Indice di protezione da agenti esterni fornita dall’involucro</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.3</td>
<td>Protetto contro gli effetti dell’immersione temporanea</td>
</tr>
<tr>
<td></td>
<td>Fare riferimento al manuale/opuscolo di istruzioni</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.2-10</td>
<td>Seguire le istruzioni per l’uso (impiegate secondo la norma IEC 60601-1)</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consultare le istruzioni per l’uso</td>
<td>ISO 15223-1:2016 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.4.3</td>
<td>Indica la necessità dell’operatore di consultare le istruzioni per l’uso</td>
</tr>
<tr>
<td></td>
<td>Corrente alternata</td>
<td>ISO 7000/IEC 60417 Segni grafici utilizzabili sulle apparecchiature</td>
<td>5032</td>
<td>Indica sulla targhetta che l’apparecchiatura è idonea esclusivamente all’uso con corrente alternata, al fine di individuare i terminali corretti</td>
</tr>
<tr>
<td></td>
<td>Marcatura CE</td>
<td>Direttiva del consiglio 93/42/CEE</td>
<td>Articolo 17 Allegato XII</td>
<td>Indica la conformità tecnica europea</td>
</tr>
<tr>
<td></td>
<td>Conformité Européenne N. di riferimento dell’organismo notificato: 2797</td>
<td>Direttiva del consiglio 93/42/CEE</td>
<td>Articolo 17 Allegato XII</td>
<td>Indica la conformità tecnica europea e l’identificazione dell’organismo notificato responsabile dell’attuazione delle procedure di cui agli allegati II, IV, V e VI</td>
</tr>
<tr>
<td></td>
<td>Tensione pericolosa</td>
<td>ISO 7000/IEC 60417 Segni grafici utilizzabili sulle apparecchiature</td>
<td>5036</td>
<td>Indica i rischi derivanti da tensione pericolosa</td>
</tr>
<tr>
<td></td>
<td>Limite di impilamento per numero</td>
<td>ISO 7000/IEC 60417 Segni grafici utilizzabili sulle apparecchiature</td>
<td>2403</td>
<td>Indica che gli articoli non sono possono essere impilati verticalmente a un’altezza superiore di quella pari al numero di articoli specificato</td>
</tr>
<tr>
<td></td>
<td>Attenzione. Superficie calda</td>
<td>ISO 7000/IEC 60417 Segni grafici utilizzabili sulle apparecchiature</td>
<td>5041</td>
<td>Indica che l’articolo contrassegnato può essere caldo, pertanto va maneggiato con la dovuta attenzione</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Simbolo]</td>
<td>Attenzione. Pericolo campo magnetico statico</td>
<td>ISO 7000/IEC 60417 Segni grafici utilizzabili sulle apparecchiature</td>
<td>6204</td>
<td>Identifica le aree con potenziali campi magnetici e forze statici in un’installazione</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Parti applicate di tipo BF</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.2-10</td>
<td>Identifica la parte applicata di tipo BF conforme alla norma IEC 60601-1</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Parte applicata anti-defibrillazione di tipo CF</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.1-27</td>
<td>Identifica una parte applicata anti-defibrillazione di tipo BF conforme alla norma IEC 60601-1</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Dispositivo sensibili alle scariche elettrostatiche</td>
<td>IEC 60417:2002 Segni grafici utilizzabili sulle apparecchiature</td>
<td>5134</td>
<td>Indica le confezioni contenenti dispositivi sensibili alle cariche elettrostatiche, oppure identifica un dispositivo o un connettore non sottoposti a prove per valutarne l’immunità alle scariche elettrostatiche</td>
</tr>
<tr>
<td>![Simbolo]</td>
<td>Marchio di conformità ai regolamenti (Regulatory Compliance Mark, RCM)</td>
<td>AS/NZS3820</td>
<td>—</td>
<td>Indica il marchio di conformità ai regolamenti C-Tick per Australia e Nuova Zelanda Dispositivo conforme ai principali regolamenti di Australia e Nuova Zelanda in materia di dispositivi elettronici.</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Codice di partita, di data o di lotto: tipo di numero di controllo</td>
<td>ISO 15223-1 Dispositivi medici - Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite - Parte 1: Requisiti generali</td>
<td>5.1.5</td>
<td>Indica il codice di partita del produttore in modo da poter identificare il lotto o la partita</td>
</tr>
<tr>
<td></td>
<td>Rischio biologico</td>
<td>ISO 7010 - Simboli grafici - Colori e segnali di sicurezza</td>
<td>W009</td>
<td>Avvertenza di rischio biologico</td>
</tr>
<tr>
<td></td>
<td>Simboli di sicurezza INMETRO</td>
<td>—</td>
<td>—</td>
<td>Indica l’organismo di certificazione brasiliano del National Institute of Metrology Standardization and Industrial Quality (INMETRO)</td>
</tr>
<tr>
<td></td>
<td>Marchio di certificazione della Canadian Standards Association</td>
<td>—</td>
<td>—</td>
<td>Marchio di certificazione CSA che indica che il prodotto è conforme ai requisiti CSA e ANSI/UL applicabili ed è autorizzato per l’uso in Canada e negli Stati Uniti.</td>
</tr>
<tr>
<td></td>
<td>Riciclare i materiali ondulati</td>
<td>—</td>
<td>—</td>
<td>La scatola per il trasporto è in cartone ondulato e deve essere riciclata opportunamente</td>
</tr>
<tr>
<td></td>
<td>Data di fabbricazione</td>
<td>ISO 7000 - Segni grafici utilizzabili sulle apparecchiature</td>
<td>5.1.3</td>
<td>Per indicare la data di produzione di un prodotto</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corrente continua (CC)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>GEL</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Resy: simbolo del riciclo</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Indice di protezione da agenti esterni fornita dall’involucro</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.3</td>
<td>Protetto contro gli effetti dell’immersione temporanea in acqua. Immersibile</td>
</tr>
<tr>
<td></td>
<td>Indice di protezione da agenti esterni fornita dall’involucro</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>D.3</td>
<td>Protetto contro gli effetti dell’immersione temporanea in acqua. Apparecchiatura impermeabile</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Simboli delle etichette
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carico di peso massimo</td>
<td>IEC 60601-1 Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
<td>7.2.21</td>
<td>Indica il peso totale dell’apparecchiatura, incluso il carico di lavoro sicuro</td>
</tr>
<tr>
<td></td>
<td>Marchio di Underwriters Laboratories Certification</td>
<td>—</td>
<td>—</td>
<td>Certification solo per scosse elettriche, incendi e pericoli meccanici</td>
</tr>
<tr>
<td></td>
<td>Certificazione di prodotto UL.</td>
<td>—</td>
<td>—</td>
<td>Il prodotto o la società hanno soddisfatto le norme rigorose relative alla sicurezza dei prodotti.</td>
</tr>
<tr>
<td></td>
<td>Controllo dell’inquinamento in Cina (10)</td>
<td>ISO 7000:2014 Segni grafici utilizzabili sulle apparecchiature</td>
<td>1135</td>
<td>Logo del controllo dell’inquinamento (si applica a tutte le parti/i prodotti elencati nella tabella informativa RoHS della Cina. Potrebbe non comparire sulla parte esterna di alcune parti/alcuni prodotti a causa di limitazioni di spazio).</td>
</tr>
</tbody>
</table>
Tabella 7: Simboli delle etichette standard (segue)

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Titolo</th>
<th>Organizzazione per lo sviluppo degli standard</th>
<th>Numero di riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marchio Certificato Obbligatorio Cinese ("Marchio CCC"). Contrassegno di sicurezza che indica la conformità alle normative nazionali cinesi per i prodotti venduti nella Repubblica Popolare Cinese.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>STERILE EO</td>
<td>Sterilizzato con ossido di etilene</td>
<td>ISO 15223-1 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.2.3</td>
<td>Indica un dispositivo medico sterilizzato mediante ossido di etilene</td>
</tr>
<tr>
<td>STERILE R</td>
<td>Sterilizzato con irradiazione</td>
<td>ISO 15223-1 Dispositivi medici – Simboli da utilizzare nelle etichette del dispositivo medico, nell’etichettatura e nelle informazioni che devono essere fornite – Parte 1: Requisiti generali</td>
<td>5.2.4</td>
<td>Indica un dispositivo medico sterilizzato mediante irradiazione</td>
</tr>
</tbody>
</table>
Caratteristiche tecniche

Trasduttori supportati (SonoSite SII)

La seguente sezione ridondante è stata rimossa dal manuale dell’utente di SonoSite SII. Le stesse informazioni sono presenti nella Tabella 9-2 del manuale dell’utente; la revisione sarà effettuata nel prossimo aggiornamento.

Tabella 8: Trasduttori supportati

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Lunghezza massima del cavo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trasduttore C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore rC60xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore HSL25x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Trasduttore ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Trasduttore L38xi standard/corazzato</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Trasduttore L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Trasduttore P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Trasduttore rP19x standard/corazzato</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>

Per i trasduttori, la lunghezza massima del cavo è misurata tra i fermacavo. Le lunghezze stabilite non includono le lunghezze di cavo nelle seguenti posizioni: al di sotto dei fermacavo, all’interno del perimetro del trasduttore o all’interno del connettore del trasduttore.
Norme

Norme di sicurezza elettromeccanica

Tabella 9: Norme di sicurezza elettromeccanica

<table>
<thead>
<tr>
<th>Norme</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA C22.2 n. 60601-1:2014 (Edizione 3.1)</td>
<td>Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
</tr>
<tr>
<td>IEC 60601-1:2012 (Edizione 3.1)</td>
<td>Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
</tr>
<tr>
<td>IEC 60601-2-37:2015</td>
<td>Apparecchiature elettromedicali – Parte 2-37: Requisiti particolari per la sicurezza di base e le prestazioni essenziali delle apparecchiature per diagnosi mediche con ecografia e monitoraggio</td>
</tr>
<tr>
<td>IEC 60601-1-6:2013</td>
<td>Apparecchiature elettromedicali – Parte 1-6: Requisiti generali per le prestazioni di sicurezza ed essenziali di base - Normale collaterale: usabilità</td>
</tr>
<tr>
<td>JIS T0601-1:2012 (Terza edizione)</td>
<td>Japanese Industrial Standard, Apparecchiature elettromedicali – Parte 1: Requisiti generali per la sicurezza di base e le prestazioni essenziali</td>
</tr>
</tbody>
</table>

Uscita acustica

Principio ALARA

Applicazione del principio ALARA

La modalità di acquisizione delle immagini selezionata dall’ecografista dipende dalle informazioni diagnostiche desiderate. Le immagini 2D offrono informazioni anatomiche, le immagini CPD offrono informazioni sull’energia o l’ampiezza del segnale Doppler nel corso del tempo e in una determinata posizione anatomica e vengono utilizzate per rilevare la presenza di flussi sanguigni; le immagini a colori offrono informazioni sull’energia o sull’ampiezza del segnale Doppler nel corso del tempo in una determinata posizione anatomica e vengono utilizzate per rilevare la presenza, la velocità e la direzione del flusso sanguigno; le immagini Tissue Harmonic Imaging utilizzano frequenze più elevate in ingresso per ridurre ingombri, artefatti e migliorare la risoluzione delle immagini 2D. Conoscendo la natura della modalità di acquisizione delle immagini utilizzata, l’ecografista è in grado di applicare il principio ALARA.
L’uso prudente del sistema richiede che l’esposizione del paziente sia limitata all’uscita ultrasonica minima per il periodo di tempo minimo necessario al conseguimento di risultati diagnostici accettabili. Per un uso prudente del sistema è necessario basare le decisioni sul tipo di paziente e di esame, sull’anamnesi del paziente, sulla facilità o difficoltà di ottenimento di dati utili alla diagnosi e sul potenziale riscaldamento locale del paziente causato dalla temperatura superficiale del trasduttore.

Il sistema è stato progettato per assicurare che la temperatura sulla superficie del trasduttore non superi i limiti stabiliti nella norma IEC 60601-2-37: Norme particolari per la sicurezza delle apparecchiature per la diagnosi e il monitoraggio medico a ultrasuoni. Consultare “Aumento della temperatura della superficie del trasduttore” a pagina 10-9. In caso di malfunzionamento del dispositivo, sono disponibili controlli ridondanti che limitano la potenza del trasduttore tramite una struttura elettrica che riduce sia la corrente di alimentazione sia la tensione fornite al trasduttore.

L’ecograpfaista utilizza i controlli del sistema per regolare la qualità delle immagini e limitare l’uscita ultrasonica. Tali controlli possono essere suddivisi in tre categorie: controlli che influiscono direttamente sulla potenza, controlli che influiscono indirettamente sull’uscita e controlli del ricevitore.

Controlli diretti

In qualsiasi modalità di acquisizione delle immagini, il sistema non eccede un valore di intensità media temporale di picco spaziale (ISPTA) di 720 mW/cm². (Per l’esame oftalmico o orbitale, l’uscita acustica è limitata ai valori riportati qui di seguito: ISPTA non supera 50 mW/cm²; IT non supera 1,0 e IM non supera 0,23). Alcuni trasduttori possono assumere valori di indice meccanico (IM) e indice termico (IT) superiori a 1,0 in specifiche modalità di acquisizione delle immagini. È possibile monitorare i valori IM e IT e regolare i controlli per ridurli. Consultare “Linee guida per la riduzione di IM e IT” a pagina 10-3. Un altro modo per rispettare il principio ALARA è impostare i valori IM o IT a un basso livello e modificare quindi quest’ultimo fino a ottenere una modalità Doppler o un’immagine soddisfacente. Per ulteriori informazioni su IM e IT, fare riferimento al Medical Ultrasound Safety, AIUM (viene inclusa una copia unitamente a ciascun sistema) e all’Allegato della norma IEC 60601-2-37 “Guidance on the interpretation of TI and MI to be used to inform the operator”.

Visualizzazione dell’uscita

Documenti di riferimento correlati

Medical Ultrasound Safety, American Institute of Ultrasound in Medicine (AIUM), 2014 (viene fornita una copia con ciascun sistema).

Aumento della temperatura della superficie del trasduttore

La Tabella 10-4 e la Tabella 10-5 elencano l’aumento della temperatura superficiale misurata rispetto alla temperatura ambiente (23 °C ± 3 °C) dei trasduttori utilizzati con il sistema per ecografia. Le temperature sono misurate in conformità alla norma IEC 60601-2-37, con i controlli e le impostazioni calibrati per fornire le temperature massime.

Misurazione dell’uscita acustica

L’uscita acustica di questo sistema per ecografia è stata misurata e calcolata in conformità alla Norma sulla misurazione acustica di uscita per le apparecchiature diagnostiche ecografiche (NEMA UD2-2004) e IEC 60601-2-37: 2015, Requisiti particolari per la sicurezza di base e le prestazioni essenziali degli apparecchi per la diagnosi e il monitoraggio a ultrasuoni.

Tabelle dell’uscita acustica

Il formato delle tabelle sull’uscita acustica è stato aggiornato.

Modello trasduttore: C8x Modalità operativa: 2D ... 413
Modello trasduttore: C8x Modalità operativa: M mode .. 414
Modello trasduttore: C8x Modalità operativa: Color/CPD .. 415
Modello trasduttore: C8x Modalità operativa: PW Doppler .. 416
Modello trasduttore: C11x Modalità operativa: PW Doppler ... 417
Modello trasduttore: C35x Modalità operativa: 2D ... 418
Modello trasduttore: C35x Modalità operativa: PW Doppler ... 419
Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: 2D 420
Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: M mode 421
Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: Color/CPD 422
Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: PW Doppler 423
Modello trasduttore: HFL38xi Modalità operativa: 2D .. 424
Modello trasduttore: HFL38xi Modalità operativa: M mode .. 425
Modello trasduttore: HFL38xi Modalità operativa: Color/CPD ... 426
Modello trasduttore: HFL38xi Modalità operativa: PW Doppler ... 427
Modello trasduttore: HFL50x Modalità operativa: 2D ... 428
Modello trasduttore: HFL50x Modalità operativa: M mode .. 429
Modello trasduttore: HFL50x Modalità operativa: Color ... 430
Modello trasduttore: HFL50x Modalità operativa: PW Doppler .. 431
Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: 2D ... 432
Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: M mode 433
Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: Color/CPD 434
Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: PW Doppler 435
Modello trasduttore: HSL25x Modalità operativa: 2D ... 436
Modello trasduttore: HSL25x Modalità operativa: Color/CPD ... 437
Modello trasduttore: HSL25x Modalità operativa: PW Doppler .. 438
Modello trasduttore: ICTx Modalità operativa: PW Doppler ... 439
Modello trasduttore: L25x (uso oftalmico) Modalità operativa: 2D ... 440
Modello trasduttore: L25x (uso oftalmico) Modalità operativa: M mode 441
Modello trasduttore: L25x (uso oftalmico) Modalità operativa: Color/CPD 442
Modello trasduttore: L25x (uso oftalmico) Modalità operativa: PW Doppler 443
Modello trasduttore: L25x Modalità operativa: 2D ... 444
Modello trasduttore: L25x Modalità operativa: Color/CPD ... 445
Modello trasduttore: L25x Modalità operativa: PW Doppler ... 446
Modello trasduttore: L38xi Modalità operativa: 2D ... 447
Modello trasduttore: L38xi Modalità operativa: M mode .. 448
Modello trasduttore: L38xi Modalità operativa: Color/CPD .. 449
Modello trasduttore: L38xi Modalità operativa: PW Doppler ... 450
Modello trasduttore: P10x Modalità operativa: Color ... 451
Modello trasduttore: P10x Modalità operativa: CW Doppler ... 452
Modello trasduttore: P10x Modalità operativa: PW Doppler ... 453
Modello di trasduttore: rC60xi Modalità operativa: 2D ... 454
Modello di trasduttore: rC60xi Modalità operativa: M mode .. 455
Modello di trasduttore: rC60xi Modalità operativa: Color/CPD ... 456
Modello di trasduttore: rC60xi Modalità operativa: PW Doppler .. 457
Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: 2D ... 458
Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: M mode 459
Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: Color/CPD 460
Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: PW Doppler 461
Modello di trasduttore: rP19x Modalità operativa: 2D ... 462
Modello di trasduttore: rP19x Modalità operativa: M mode .. 463
Modello di trasduttore: rP19x Modalità operativa: Color/CPD ... 464
Modello di trasduttore: rP19x Modalità operativa: CW Doppler .. 465
Modello di trasduttore: rP19x Modalità operativa: PW Doppler .. 466
Modello trasduttore: TEEExi Modalità operativa: CW Doppler .. 467
Modello trasduttore: TEEExi Modalità operativa: PW Doppler .. 468
Tabella 10: Modello trasduttore: C8x Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>9524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>18,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>2,5 – 3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.

Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).

— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 11: Modello trasduttore: C8x Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,91</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>433</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>149</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>226</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,57</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Pro</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Pen</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 12: Modello trasduttore: C8x Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pil,\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pil,\alpha}$ o $z_{si,\alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pi} o z_{sii} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pi} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modalità</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Pen/1,5 – 1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Alto/Qualsiasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Stretto/Qualsiasi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITO Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITC Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>23,1</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>#</td>
<td>23,1</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>4,80</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{siii,\alpha}$ (mW/cm2)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{siii} (mW/cm2)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Pro</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 4</td>
<td>Zona 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1008</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.

Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 14: Modello trasduttore: C11x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,5</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td>21,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,37</td>
<td>4,36</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td>21,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,37</td>
<td>4,36</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td>21,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>24,6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,37</td>
<td>4,36</td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 1</td>
<td>Zona 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>10.417</td>
<td>6250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 15: Modello trasduttore: C35x Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>1,8</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii,a}}$ (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Prer</td>
<td>1021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srr (Hz)</td>
<td>7,98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Npps</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{p_{ii,a}}$ (W/cm²)</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{p_{ii,a}}$ o $z_{s_{ii,\alpha}}$ (mW/cm²)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{ii}}$ o $z_{s_{ii}}$ (mW/cm²)</td>
<td>16,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
<td>2,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Msk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>8,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 16: Modello trasduttore: C35x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>(p_{r,\alpha} \times z_{IM}) (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>71,1</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
</tr>
<tr>
<td>(p_{r} \times z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>(p_{r} \times z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>(I_{pa,\alpha} \times z_{pii,\alpha}) (W/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha} \times z_{pii,\alpha} \times z_{sii,\alpha}) (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta} \times z_{pii} \times z_{sii}) (mW/cm²)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td></td>
<td>Colonna</td>
<td>Colonna</td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td></td>
<td>Zona 5</td>
<td>Zona 0</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td></td>
<td>6250</td>
<td>15.625</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 17: Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,007</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,77</td>
<td>0,77</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,21</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,59</td>
<td>6,75</td>
<td>6,75</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>11339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>19,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>11,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,7</td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4,9</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 18: Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td></td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,003</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_p_{a,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td></td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td>0,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td></td>
<td>Ottimizzazione</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
</tr>
<tr>
<td></td>
<td>Profondità (cm)</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 19: Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>0,39</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P (mW)</td>
<td>—</td>
<td>1,11</td>
<td>1,11</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>—</td>
<td>0,75</td>
<td>0,75</td>
<td>—</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>5,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spTa,\alpha} a z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spTa} a $z_{pii} o z_{sii}$ (mW/cm²)</td>
<td>2,1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Controlli operativi

<table>
<thead>
<tr>
<th>Tipo di esame</th>
<th>Modalità</th>
<th>Ottimizzazione/Profondità 2D (cm)</th>
<th>Ottimizzazione Color/FRI (Hz)</th>
<th>Posizione/dimensioni della casella Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oph</td>
<td>CVD</td>
<td>Pen/1,5</td>
<td>Alto/7813</td>
<td>In basso/Piccolo</td>
</tr>
<tr>
<td>Oph</td>
<td>CVD</td>
<td>Pen/4,9</td>
<td>Alto/6944</td>
<td>Def/Stretto</td>
</tr>
<tr>
<td>Oph</td>
<td>CVD</td>
<td>Pen/4,9</td>
<td>Alto/6944</td>
<td>Def/Stretto</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 20: Modello trasduttore: HFL38xi (uso oftalmico) Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,18</td>
<td>0,09</td>
<td>0,17</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>1,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,33</td>
<td>5,33</td>
<td>#</td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} a z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} a z_{pii}$ o z_{sii} (mW/cm²)</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 1</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1302</td>
<td>10.417</td>
<td>10.417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 21: Modello trasduttore: HFL38xi Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,05</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2127</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>11,1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>494</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>13,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>19,4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,81</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Ven</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>3,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MB</td>
<td>N/A</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Visione ago</td>
<td>On</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 22: Modello trasduttore: HFL38xi Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 23: Modello trasduttore: HFL38xi Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spfa,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>27,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>40,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parametri acustici

Altre informazioni

Controlli operativi

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 24: Modello trasduttore: HFL38xi Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
<th>Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>1,1</td>
<td>0,8</td>
<td>1,1</td>
<td>2,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a} \cdot z_{IM}$ (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>1,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a} \cdot z_{pii,a}$ (W/cm2)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,a} \cdot z_{pii,a}$ o $z_{sii,a}$ (mW/cm2)</td>
<td>102,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>210,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Nrv</td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 3</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1008</td>
<td>3125</td>
<td>3125</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>2733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parametri acustici

Altre informazioni

<table>
<thead>
<tr>
<th>Tipo di esame</th>
<th>Qualsiasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottimizzazione</td>
<td>Pen</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.

Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITO Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITC Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{r,a} z_{IM}$ (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_a (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>8233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a} z_{pii,a}$ (W/cm2)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a} z_{pii,a}$ o $z_{sii,a}$ (mW/cm2)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} z_{pii}$ o z_{sii} (mW/cm2)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r z_{pii}$ (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modalità</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione/profondità (cm)</td>
<td>Basso/3,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 28: Modello trasduttore: HFL50x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>1,1</td>
<td>1,9</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>1,1</td>
<td>0,7</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>42,6</td>
<td>42,6</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>42,6</td>
<td>42,6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,34</td>
<td>5,34</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{pii} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spita,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>399,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spita} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>599,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Qualsiasi</td>
<td>Qualsiasi</td>
<td>Qualsiasi</td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 3</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1008</td>
<td>1563 – 3125</td>
<td>1563 – 3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
</tbody>
</table>

| Parametri acustici | | | | |
|-------------------|-----------|-----------|-----------|
| $p_{r,\alpha}$ a z_{IM} (MPa) | 0,47 | | |
| P (mW) | | 1,62 | 1,62 | # |
| $P_{1\times 1}$ (mW) | | 0,70 | 0,70 | |
| z_s (cm) | | — | — | |
| z_b (cm) | | — | — | |
| z_{IM} (cm) | 0,8 | | |
| $z_{p_{II,\alpha}}$ (cm) | 0,8 | | |
| f_{awf} (MHz) | 7,65 | 6,97 | 6,97 | # |

| Altre informazioni | | | | |
|-------------------|-----------|-----------|-----------|
| pr (Hz) | 12,580 | | |
| srr (Hz) | 12,3 | | |
| n_{pps} | 4 | | |
| $I_{pa,\alpha}$ a $z_{p_{II,\alpha}}$ (W/cm²) | 13,4 | | |
| $I_{spta,\alpha}$ a $z_{p_{II,\alpha}}$ o $z_{s_{II,\alpha}}$ (mW/cm²) | 0,6 | | |
| I_{spta} a $z_{p_{II}}$ o $z_{s_{II}}$ (mW/cm²) | 1,0 | | |
| p_{r} a $z_{p_{II}}$ (MPa) | 0,58 | | |

| Controlli operativi | | | | |
|---------------------|-----------|-----------|-----------|
| Tipo di esame | Oph | Oph | Oph |
| Ottimizzazione | Res | Pen | Pen |
| Profondità (cm) | 1,9 | 4,3 | 4,3 |
| MB | On | On | On |

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td></td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td>0,010</td>
<td>0,009</td>
</tr>
<tr>
<td>$p_r,\alpha \cdot a_{z_{IM}}$ (MPa)</td>
<td></td>
<td>0,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} \cdot a_{z_{pii,\alpha}}$ (W/cm2)</td>
<td></td>
<td>14,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spi,\alpha} \cdot a_{z_{pii,\alpha}} \cdot a_{z_{sii,\alpha}}$ (mW/cm2)</td>
<td></td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spi} \cdot a_{z_{pii}} \cdot a_{z_{sii}}$ (mW/cm2)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td>0,61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td></td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td></td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td></td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 31: Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>p_{r,\alpha} a z_{IM} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{pii,\alpha} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{pa,\alpha} a z_{pii,\alpha} (W/cm^2)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta,\alpha} a z_{pii,\alpha} o z_{sii,\alpha} (mW/cm^2)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm^2)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modalità</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Basso/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
<td></td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Def/Def</td>
<td>In alto/Corto-largo</td>
<td>In alto/Corto-largo</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 32: Modello trasduttore: HSL25x (uso oftalmico) Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITO Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITC Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parametri acustici				

prr (Hz)	1953			
srr (Hz)		—		
n_{pps}		1		
$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)	7,4			
$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)	18,4			
l_{spta} a z_{pii} o z_{sii} (mW/cm²)	44,9			
p_r a z_{pii} (MPa)		0,56		

Altre informazioni				

Tipo di esame	Oph	Oph	Oph	
Dimensioni volume campione (mm)	1	1	1	
Posizione volume campione	Zona 7	Zona 7	Zona 7	
FRI (Hz)	1953	5208	5208	

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 33: Modello trasduttore: HSL25x Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,87</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1061</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>478</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>12,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>16,4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,39</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Controlli operativi</td>
<td>Tipo di esame</td>
<td>Nrv/Msk/ Ven/Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>1,9 – 2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 34: Modello trasduttore: HSL25x Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha} z_{IM}$ (MPa)</td>
<td>2,35</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>47,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>63,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi
- **Tipo di esame**: Sup
- **Modalità**: CVD
- **Ottimizzazione/Profondità 2D (cm)**: Pen/3,1
- **Ottimizzazione Color/FRI (Hz)**: Basso/401
- **Posizione/dimensioni della casella Color**: Def/Def

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
* Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 35: Modello trasduttore: HSL25x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>28,1</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>#</td>
<td>28,1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>0,75</td>
<td>#</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>6,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altre informazioni</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlli operativi</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di esame</td>
<td>Nrv</td>
<td>Nrv</td>
<td>Nrv</td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td>Zona 7</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 36: Modello trasduttore: ICTx Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
</tr>
</tbody>
</table>

Valore indice massimo

Valore componente indice

<table>
<thead>
<tr>
<th>p_{r,\alpha} a z_{IM} (MPa)</th>
<th>#</th>
<th>1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>16,3</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>16,3</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>1,60</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{pii,\alpha} (cm)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>4,36</td>
</tr>
</tbody>
</table>

Altre informazioni

prr (Hz)	#	
srr (Hz)	#	
n_{pps}	#	
l_{pa,\alpha} a z_{pii,\alpha} (W/cm²)	#	
l_{spta,\alpha} a z_{pii,\alpha} o z_{si1,\alpha} (mW/cm²)	#	
l_{spta} a z_{pii} o z_{si1} (mW/cm²)	#	
p_r a z_{pii} (MPa)	#	

Controlli operativi

<table>
<thead>
<tr>
<th>Tipo di esame</th>
<th>Qualsiasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>3</td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 1</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>Qualsiasi</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.

Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).

xx Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 38: Modello trasduttore: L25x (uso oftalmico) Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
<td>0,020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{p_i,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altre informazioni</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{p_{i,\alpha}}$ (W/cm²)</td>
<td></td>
<td>14,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{p_{i,\alpha}}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{i}}$ o z_{sii} (mW/cm²)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{pi} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlli operativi</th>
<th>Tipo di esame</th>
<th>Ottimizzazione</th>
<th>Profondità (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oph</td>
<td>Res</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>Oph</td>
<td>Pen</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td>Oph</td>
<td>Pen</td>
<td>4,3</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 39: Modello trasduttore: L25x (uso oftalmico) Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>IM</td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Modalità</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Basso/401</td>
<td>Med/4167</td>
<td>Med/4167</td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Def/Def</td>
<td>In alto/Corto-largo</td>
<td>In alto/Corto-largo</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 40: Modello trasduttore: L25x (uso oftalmico) Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td></td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
<td>0,21</td>
</tr>
<tr>
<td>$p_{r,\alpha} \cdot z_{IM} \text{ (MPa)}$</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P \text{ (mW)}$</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1x1} \text{ (mW)}$</td>
<td>4,0</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{s} \text{ (cm)}$</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{b} \text{ (cm)}$</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{IM} \text{ (cm)}$</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z_{p_{i1,\alpha}} \text{ (cm)}$</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$f_{awf} \text{ (MHz)}$</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>#</td>
</tr>
<tr>
<td>altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{rr} \text{ (Hz)}$</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_{rr} \text{ (Hz)}$</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} \cdot z_{p_{ii,\alpha}} \text{ (W/cm}^{2}\text{)}$</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} \cdot z_{p_{ii,\alpha}} \cdot z_{sii,\alpha} \text{ (mW/cm}^{2}\text{)}$</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} \cdot z_{p_{ii}} \cdot z_{s_{ii}} \text{ (mW/cm}^{2}\text{)}$</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} \cdot z_{p_{ii}} \text{ (MPa)}$</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1953</td>
<td>5208</td>
<td>5208</td>
<td>5208</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 41: Modello trasduttore: L25x Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>(S_{S})</th>
<th>(S_{S})</th>
<th>(S_{S})</th>
<th>(S_{S})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{r, \alpha}) a (z_{IM}) (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{IM}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{p_{i, \alpha}}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa, \alpha}) a (z_{p_{i, \alpha}}) (W/cm(^2))</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta, \alpha}) a (z_{p_{i, \alpha}}) o (z_{sii, \alpha}) (mW/cm(^2))</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) a (z_{p_{i}}) o (z_{sii}) (mW/cm(^2))</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) a (z_{p_{i}}) (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Nrv/Msk/ Ven/Art</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Qualsiasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>1,9 – 2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
\# Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
\— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 42: Modello trasduttore: L25x Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>5261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>81,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>109,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi

<table>
<thead>
<tr>
<th>Tipo di esame</th>
<th>Ven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalità</td>
<td>CVD</td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Pen/3,1</td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Basso/779</td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Def/Def</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 43: Modello trasduttore: L25x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etichetta indice</td>
<td>IM</td>
<td>ITT</td>
<td>ITO</td>
<td>ITC</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>0,75</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td>pr, (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td>Tipo di esame</td>
<td>Vas/Ven/Nrv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensioni volume campione (mm)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posizione volume campione</td>
<td>Zona 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRI (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 44: Modello trasduttore: L38xi Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITO Sulla superficie</th>
<th>Sotto la superficie</th>
<th>ITC Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{IM} (MPa)</td>
<td>3,3</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,8</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,8</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{aw} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ a $z_{pii,a}$ o $z_{sii,a}$ (mW/cm²)</td>
<td>10,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visione ago</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 45: Modello trasduttore: L38xi Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>3,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>37,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{p_{ii,\alpha}}$ (W/cm2)</td>
<td>776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{p_{ii,\alpha}}$ o $z_{s_{ii,\alpha}}$ (mW/cm2)</td>
<td>181,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a $z_{p_{ii}}$ o $z_{s_{ii}}$ (mW/cm2)</td>
<td>280,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_f a $z_{p_{ii}}$ (MPa)</td>
<td>4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Gen</td>
<td>Pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4,7</td>
<td>7,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è < 1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 46: Modello trasduttore: L38xi Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>64,7</td>
<td>64,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>49,0</td>
<td>49,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{lIM} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pII,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>4,83</td>
<td>4,83</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pII,\alpha}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} a z_{pII,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>35,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pII} o z_{sii} (mW/cm²)</td>
<td>47,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pII} (MPa)</td>
<td>3,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Art</td>
<td>Ven</td>
<td>Ven</td>
<td></td>
</tr>
<tr>
<td>Modalità</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Pen/2,0</td>
<td>Pen/3,1</td>
<td>Pen/3,1</td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Basso/393</td>
<td>Basso/2315</td>
<td>Basso/2315</td>
<td></td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Def/Def</td>
<td>In basso/Corto-stretto</td>
<td>In basso/Corto-stretto</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 47: Modello trasduttore: L38xi Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>2,6</td>
<td>1,8</td>
<td>2,6</td>
<td>3,7</td>
</tr>
</tbody>
</table>

- **$p_{r,a} \cdot z_{IM}$ (MPa)**: 2,59
- **P (mW)**: 114,5
- **P_{1x1} (mW)**: 114,5
- **z_s (cm)**: 1,2
- **z_b (cm)**: 1,2
- **z_{IM} (cm)**: 0,7
- **$z_{p_{i},\alpha}$ (cm)**: 0,7
- **f_{awf} (MHz)**: 4,06

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>prr (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altre informazioni</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{pa,a} \cdot z_{p_{i},\alpha}$ (W/cm²)</td>
<td>32,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a} \cdot z_{p_{i},\alpha} \cdot z_{s_{i},\alpha}$ (mW/cm²)</td>
<td>399,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} \cdot z_{p_{i}} \cdot z_{s_{i}}$ (mW/cm²)</td>
<td>495,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} \cdot z_{p_{i}}$ (MPa)</td>
<td>2,86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlli operativi</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di esame</td>
<td>Art</td>
<td>Nrv</td>
<td>Nrv</td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 0</td>
<td>Zona 7</td>
<td>Zona 7</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1008</td>
<td>10.417</td>
<td>10.417</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 48: Modello trasduttore: P10x Modalità operativa: Color

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1,1</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a} \alpha z_{IM}$ (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>42,2</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>3,89</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sptc,\alpha} a z_{pii,\alpha}$ o $z_{sli,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sli} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi

- **Tipo di esame**: Crd
- **Modalità**: CVD
- **Ottimizzazione/profondità 2D**: Pen/8,9/stretto
- **Ottimizzazione Color/FRI (Hz)**: Basso/2033
- **Posizione/dimensioni della casella Color**: In alto/Cortolargo

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 49: Modello trasduttore: P10x Modalità operativa: CW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT Sulla superficie</th>
<th>ITT Sotto la superficie</th>
<th>ITO Sulla superficie</th>
<th>ITO Sotto la superficie</th>
<th>ITC Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,8</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r, \alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>34,8</td>
<td>25,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>34,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>4,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ a $z_{pii, \alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa, \alpha}$ a $z_{pii, \alpha}$ o $z_{sii, \alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi

| Tipo di esame | Crd | Crd |
| Posizione volume campione | Zona 3 | Zona 0 |

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 50: Modello trasduttore: P10x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sotto la superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,z} I_M$ (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>34,4</td>
<td>31,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_1 z_{II}}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
<td>3,86</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altre informazioni</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{ppps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{p_{1a}, z_{p_{II}}} (W/cm^2)$</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{s_{p_{II}, z_{p_{II}}} z_{s_{II}}, z_{s_{II}}} (mW/cm^2)$</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{s_{p_{II}, z_{p_{II}}} z_{s_{II}}} (mW/cm^2)$</td>
<td>729,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r z_{p_{II}}$ (MPa)</td>
<td>2,54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlli operativi</th>
<th>Crd</th>
<th>Crd</th>
<th>Abd</th>
<th>Crd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di esame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 2</td>
<td>Zona 6</td>
<td>Zona 1</td>
<td>Zona 0</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1562</td>
<td>1008</td>
<td>1953</td>
<td>15.625</td>
</tr>
<tr>
<td>TDI</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 51: Modello di trasduttore: rC60xi Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,31</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>28,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm²)</td>
<td>24,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (Multi fascio)</td>
<td>Off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
English

Tabella 52: Modello di trasduttore: rC60xi Modalità operativa: M mode
ITT

Valore indice massimo

IM

#

Parametri acustici

#
#

zs (cm)

fawf (MHz)

2,66

Ipa,α a zpii,α (W/cm2)

290

Ispta,α a zpii,α o zsii,α (mW/cm2)
Ispta a zpii o zsii (mW/cm2)
Tipo di esame
Ottimizzazione
Profondità (cm)
THI

#

4,3
#

2,89

#

800
—
1
144,2
328,2
3,25
Abd
Pen
6,6
Off

Português

pr a zpii (MPa)

69,8
25,9
4,2

4,3

prr (Hz)
srr (Hz)
npps

1,00

#

zIM (cm)

zpii,α (cm)

0,36

Italiano

Altre informazioni

#

(b)

2,18

P (mW)
P1x1 (mW)
zb (cm)

1,0

Français

Controlli
operativi

(a)

Español

pr,α a zIM (MPa)

Sulla Sotto la
Sulla
Sotto la Sulla
superfi- superfi- superfi- superfi- superficie
cie
cie
cie
cie

1,3

Valore componente indice

ITC

Msk
Pen
9,2
Off

459

Nederlands

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo
globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.

Tabelle dell’uscita acustica

Deutsch

Etichetta indice

ITO


Tabella 53: Modello di trasduttore: rC60xi Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{c,a} a z_{IM}$ (MPa)</td>
<td>2,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185,8</td>
<td>185,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107,5</td>
<td>107,5</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{II},a}$ (cm)</td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,22</td>
<td>2,21</td>
<td>2,21</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>9,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a} a z_{p_{II},a}$ (W/cm²)</td>
<td></td>
<td>342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a} a z_{p_{II},a} o z_{s_{II},a}$ (mW/cm²)</td>
<td></td>
<td>8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{p_{II}} o z_{s_{II}}$ (mW/cm²)</td>
<td></td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} a z_{p_{II}}$ (MPa)</td>
<td></td>
<td>3,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi

- Tipo di esame: Abd
- Modalità: CVD
- Ottimizzazione/profondità 2D (cm)/THI: Gen/11/On, Gen/4,7/Off, Gen/4,7/Off
- Ottimizzazione Color/FRI (Hz): Basso/342, Alto/3125, Alto/3125
- Posizione/dimensioni della casella Color: In basso/Alto-stretto, In basso/Alto-stretto

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 54: Modello di trasduttore: rC60xi Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
<td>4,0</td>
</tr>
<tr>
<td>$p_{r,\alpha} z_{IM}$ (MPa)</td>
<td>1,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>67,5</td>
<td>74,2</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,5</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,5</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>1302</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$I_{pa,\alpha} z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>$I_{spta,\alpha} z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>399,7</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} o z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>793,3</td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>2,43</td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 3</td>
<td>Zona 6</td>
<td>Zona 5</td>
<td></td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1302</td>
<td>2604</td>
<td>2604</td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 55: Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>$p_r,\alpha \ z_{IM}$ (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>6413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>15,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha \ z_{pii,\alpha}}$ (W/cm²)</td>
<td>4,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha \ z_{pii,\alpha} \ o \ z_{sii,\alpha}}$ (mW/cm²)</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta \ z_{pii} \ o \ z_{sii}}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r \ z_{pii}$ (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td>Tipo di esame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 56: Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,009</td>
<td>0,020</td>
<td>0,021</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>0,006</td>
<td>0,009</td>
<td>0,006</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,34</td>
<td>1,34</td>
<td>1,34</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,67</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>3,15</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>$z_{p\alpha i,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,06</td>
<td>1,83</td>
<td>1,83</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a $z_{p\alpha i}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p\alpha i,\alpha}$ (W/cm2)</td>
<td></td>
<td>4,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{p\alpha i,\alpha}$ o $z_{s\alpha i,\alpha}$ (mW/cm2)</td>
<td></td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p\alpha i}$ o $z_{s\alpha i}$ (mW/cm2)</td>
<td></td>
<td>2,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a $z_{p\alpha i}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,31</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 57: Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: Color/CPD

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametri acustici</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha} z_{IM}$ (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>15,47</td>
<td>15,47</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>9,50</td>
<td>9,50</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altre informazioni</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>prr (Hz)</td>
<td>5443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$npps$</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} z_{pii,\alpha}$ (W/cm2)</td>
<td>1,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} z_{pii,\alpha} o z_{sii,\alpha}$ (mW/cm2)</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} z_{pii} o z_{sii}$ (mW/cm2)</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlli operativi</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di esame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Modalità</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>Ottimizzazione/Profondità 2D (cm)</td>
<td>Gen/4,7</td>
<td>Gen/24</td>
<td>Gen/24</td>
</tr>
<tr>
<td>Ottimizzazione Color/FRI (Hz)</td>
<td>Basso/1157</td>
<td>Basso/3125</td>
<td>Basso/3125</td>
</tr>
<tr>
<td>Posizione/dimensioni della casella Color</td>
<td>Def/Def</td>
<td>In alto/Corto-largo</td>
<td>In alto/Corto-largo</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 58: Modello di trasduttore: rP19x (uso orbitale) Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>0,18</td>
<td>0,27</td>
<td>0,59</td>
<td>0,57</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>37,4</td>
<td>35,3</td>
<td>37,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>17,5</td>
<td>17,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>2,23</td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pii,\alpha}$ (W/cm2)</td>
<td>2,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} a z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>28,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{pii}$ o z_{sii} (mW/cm2)</td>
<td>69,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} o z_{pii} (MPa)</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Dimensioni volume campione (mm)</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Posizione volume campione</td>
<td>Zona 6</td>
<td>Zona 7</td>
<td>Zona 5</td>
<td>Zona 7</td>
</tr>
<tr>
<td>FRI (Hz)</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 59: Modello di trasduttore: rP19x Modalità operativa: 2D

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
<td>Sulla superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{IM}$ (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>152,6</td>
<td>152,6</td>
<td>177,8</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>96,1</td>
<td>96,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pili,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>2,08</td>
<td>2,08</td>
<td>1,53</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>6186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>48,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p_{a,\alpha} a z_{pili,\alpha}}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spt_{a,\alpha} a z_{pili,\alpha} o z_{sii,\alpha}}$ (mW/cm²)</td>
<td>25,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spt a z_{pili} o z_{sii}}$ (mW/cm²)</td>
<td>38,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pili} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td>Abd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Ottimizzazione</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td>Pen</td>
</tr>
<tr>
<td>Profondità (cm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4,7</td>
</tr>
<tr>
<td>MB/THI</td>
<td>Off/Off</td>
<td>Off/On</td>
<td>Off/On</td>
<td>Off/On</td>
</tr>
<tr>
<td>Larghezza settore</td>
<td>N/A</td>
<td>Stretto</td>
<td>Stretto</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 60: Modello di trasduttore: rP19x Modalità operativa: M mode

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
<th>Sulla superficie</th>
<th>Sotto la superficie</th>
<th>Sulla superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>2,1</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>55,0</td>
<td>62,1</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>4,8</td>
<td></td>
<td>4,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>#</td>
<td>1,81</td>
<td>1,77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametri acustici</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sili,\alpha}$ (mW/cm²)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sili} (mW/cm²)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controlli operativi

Tipo di esame	TCD	Abd	Abd
Ottimizzazione	Gen	Res	Res
Profondità (cm)	7,5	10	16
THI	Off	On	On

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Parametri acustici

- $p_{r,\alpha} a z_{IM}$ (MPa) | 2,1 |
- P (mW) | 128,0 | 128,0 | 170,5 |
- P_{1x1} (mW) | 115,6 | 115,6 |
- z_s (cm) |
- z_b (cm) |
- z_{IM} (cm) | 4,8 |
- $z_{p_{ii,\alpha}}$ (cm) | 4,8 |
- f_{awf} (MHz) | 1,99 | 2,14 | 2,14 | 2,12 |

Altre informazioni

- p_{rr} (Hz) | 505 |
- s_{rr} (Hz) | 7,9 |
- n_{pps} |
- $I_{pa,\alpha} a z_{p_{ii,\alpha}}$ (W/cm2) | 184 |
- $I_{spta,\alpha} a z_{p_{ii,\alpha}} o z_{sii,\alpha}$ (mW/cm2) | 2,1 |
- $I_{spta} a z_{p_{ii}} o z_{sii}$ (mW/cm2) | 3,2 |
- p_{r} a $z_{p_{ii}}$ (MPa) | 2,92 |

Controlli operativi

- Tipo di esame | Abd | TCD | TCD | Crd |
- Modalità/THI | CVD/Off | CVD/Off | CVD/Off | CVD/On |
- Ottimizzazione/profondità 2D (cm)/larghezza settore | Gen/10/N/A | Pen/7,5/N/A | Pen/7,5/N/A | Gen/16/stretto |
- Ottimizzazione Color/FRI (Hz) | Basso/300 | Basso/3125 | Basso/3125 | Alto/5208 |
- Posizione/dimensioni della casella Color | Def/Def | Def/Stretto | Def/Stretto | Def/Def |

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 62: Modello di trasduttore: rP19x Modalità operativa: CW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superfi-cie</td>
<td>Sotto la superfi-cie</td>
<td>Sulla superfi-cie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>1,2</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>125,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ o $z_{sii,\alpha}$ (mW/cm2)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} o z_{sii} (mW/cm2)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlli operativi</td>
<td>Tipo di esame</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td></td>
<td>Posizione volume campione</td>
<td>Zona 0</td>
<td>Zona 0</td>
<td>Zona 0</td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 63: Modello di trasduttore: rP19x Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore indice massimo</td>
<td>1,3</td>
<td>1,8</td>
<td>4,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>1,3</td>
<td>1,8</td>
<td>1,2</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Parametri acustici

- \(r, \alpha \) a \(z_M \) (MPa) | 1,94 |
- \(P \) (mW) | 253,7, 240,2, 251,1 |
- \(P_{1x1} \) (mW) | 118,6, 116,0 |
- \(z_b \) (cm) | 2,5 |
- \(z_b \) (cm) | 3,35 |
- \(z_{IM} \) (cm) | 3,0 |
- \(z_{p_{II}, \alpha} \) (cm) | 3,0 |
- \(f_{awf} \) (MHz) | 2,14, 2,23 |

Altre informazioni

- \(prr \) (Hz) | 1562 |
- \(srr \) (Hz) | — |
- \(n_{pps} \) | 1 |

\(I_{pa, \alpha} \) a \(z_{p_{II}, \alpha} \) (W/cm\(^2\))	180
\(I_{sp_{II}, \alpha} \) a \(z_{p_{II}, \alpha} \) o \(z_{s_{II}, \alpha} \) (mW/cm\(^2\))	374,9
\(I_{sp_{II}} \) a \(z_{p_{II}} \) o \(z_{s_{II}} \) (mW/cm\(^2\))	594,7
\(p_r \) a \(z_{p_{II}} \) (MPa)	2,42

Controlli operativi

Tipo di esame	Crd	Crd	Crd	Crd
Dimensioni volume campione (mm)	1	12	1	1
Posizione volume campione	Zona 1	Zona 7	Zona 5	Zona 5
FRI (Hz)	1562	1562	39,062	39,062
TDI	Off	Off	Off	Off

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 64: Modello trasduttore: TEExi Modalità operativa: CW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulla superficie</td>
<td>Sotto la superficie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,7</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{IM} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>34,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>34,4</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{IM} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre informazioni</td>
<td></td>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Tipo di esame</td>
<td></td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume campione</td>
<td></td>
<td>Zona 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.

Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Tabella 65: Modello trasduttore: TEExi Modalità operativa: PW Doppler

<table>
<thead>
<tr>
<th>Etichetta indice</th>
<th>IM</th>
<th>ITT</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sulla superfi-cie</td>
<td>Sotto la superfi-cie</td>
<td>Sulla superfi-cie</td>
</tr>
<tr>
<td>Valore indice massimo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Valore componente indice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Parametri acustici:
- $p_{r,\alpha} a \ z_{IM}$ (MPa) #
- P (mW) # 35,8 #
- P_{1x1} (mW) # 35,8#
- z_s (cm) #
- z_b (cm) # 2,57#
- z_{IM} (cm) #
- $z_{pii,\alpha}$ (cm) #
- f_{awf} (MHz) # # 3,81 #

Altre informazioni:
- prr (Hz) #
- srr (Hz) #
- $npps$ #
- $l_{pa,\alpha} a \ z_{pii,\alpha}$ (W/cm²) #
- $l_{spta,\alpha} a \ z_{pii,\alpha} o \ z_{sii,\alpha}$ (mW/cm²) #
- $l_{spta} a \ z_{pii} o \ z_{sii}$ (mW/cm²) #
- $p_r a \ z_{pii}$ (MPa) #

Controlli operativi:
- Tipo di esame: Crd
- Dimensioni volume campione (mm): 1
- Posizione volume campione: Zona 3
- FRI (Hz): 2604

(a) Questo indice non è richiesto per la presente modalità operativa; il valore è <1.
(b) Questo trasduttore non è inteso per uso transcranico o cefalico neonatale.
Non sono riportati dati per questa condizione di funzionamento poiché non è registrato il valore dell’indice massimo globale per il motivo indicato (riga di riferimento del valore dell’indice massimo globale).
— Dati non applicabili per questa combinazione trasduttore/modalità.
Termini utilizzati nelle tabelle dell’uscita acustica

Tabella 66: Termini utilizzati nelle tabelle dell’uscita acustica

<table>
<thead>
<tr>
<th>Termine</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Coefficiente di attenuazione utilizzato per il declassamento. Pari a 0,3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Frequenza operativa acustica.</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$</td>
<td>Intensità media di impulso attenuata.</td>
</tr>
<tr>
<td>l_{spta}</td>
<td>Intensità media temporale di picco spaziale.</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$</td>
<td>Intensità media temporale di picco spaziale attenuata.</td>
</tr>
<tr>
<td>IM</td>
<td>Indice meccanico.</td>
</tr>
<tr>
<td>P</td>
<td>Potenza di uscita.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Potenza di uscita delimitata al quadrato.</td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>Pressione acustica rarefazionale di picco attenuata.</td>
</tr>
<tr>
<td>p_r</td>
<td>Pressione acustica rarefazionale di picco.</td>
</tr>
<tr>
<td>$p_{i\i}$</td>
<td>Integrale dell’intensità di dell’impulso.</td>
</tr>
<tr>
<td>$p_{i\i,\alpha}$</td>
<td>Integrale di intensità dell’impulso attenuata.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Numero di impulsi per linea di scansione a ultrasuoni.</td>
</tr>
<tr>
<td>p_{rr}</td>
<td>Velocità di ripetizione dell’impulso (FRI).</td>
</tr>
<tr>
<td>s_{rr}</td>
<td>Velocità di ripetizione della scansione.</td>
</tr>
<tr>
<td>IT</td>
<td>Indice termico.</td>
</tr>
<tr>
<td>ITO</td>
<td>Indice termico ossa.</td>
</tr>
<tr>
<td>ITC</td>
<td>Indice termico ossa craniche.</td>
</tr>
<tr>
<td>ITT</td>
<td>Indice termico dei tessuti molli.</td>
</tr>
<tr>
<td>z_b</td>
<td>Profondità per ITO.</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>Profondità per indice meccanico.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Profondità per l’integrale dell’intensità dell’impulso di picco.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Profondità per l’integrale dell’intensità dell’impulso attenuata di picco.</td>
</tr>
</tbody>
</table>
Glossario (SonoSite Edge II)

Il termine IMT è stato rimosso dall’elenco di abbreviazioni del manuale dell’utente di SonoSite Edge II; la revisione sarà effettuata nel prossimo aggiornamento.
Errata do Manual do Usuário do SonoSite Edge II e do SonoSite SII

Introdução .. 472
Convenções do documento .. 472
Obter ajuda .. 472
Obter ajuda (SonoSite Edge II) .. 473
Passos iniciais .. 473
Usos previstos ... 473
Configuração do sistema .. 473
Configurações de conectividade (SonoSite SII) ... 473
Configuração de conectividade (SonoSite Edge II) .. 473
Configurações de status da rede .. 474
Geração de imagens .. 474
Modos de geração de imagens e exames disponíveis por transdutor (SonoSite SII) 474
Medições e cálculos (SonoSite SII) ... 475
Cálculos gerais ... 475
Referências de medições (SonoSite SII) .. 476
Precisão das medições ... 476
Publicações sobre terminologia e medidas ... 476
Limpeza e Desinfecção .. 477
Segurança .. 477
Segurança clínica .. 477
Compatibilidade eletromagnética .. 478
Transmissão sem fio ... 480
Dongle USB (Panda) sem fio .. 480
Módulo de segurança e sem fio (Laird) ... 481
Identificação dos símbolos ... 492
Especificações ... 501
Transdutores compatíveis (SonoSite SII) .. 501
Normas ... 502
Normas de segurança eletromecânica .. 502
Saída acústica .. 503
Princípio ALARA ... 503
Aplicação do princípio ALARA .. 503
Controles diretos ... 504
Exibição da saída .. 504
Documentos de orientação relacionados ... 504
Medida da saída acústica .. 504
Termos usados nas tabelas de saída acústica ... 563
Glossário (SonoSite Edge II) .. 564
Introdução

Convenções do documento

O documento segue estas convenções:

- Um **AVISO** descreve as precauções necessárias para evitar lesão ou morte.
- Um **Cuidado** descreve as precauções necessárias para proteger os produtos.
- Uma **Observação** fornece informações complementares.
- As etapas numeradas e organizadas por letras devem ser realizadas em uma ordem específica.
- As listas com marcadores apresentam informações em formato de lista, mas não implicam uma sequência.
- Os procedimentos de etapa única começam com ◆.

Para ver a descrição dos símbolos de identificação que aparecem no produto, consulte “Símbolos de identificação” no manual do usuário.

Obter ajuda

Para obter assistência técnica, entre em contato com a FUJIFILM SonoSite pelas formas a seguir:

- **Telefone**
 - (EUA ou Canadá) **+1-877-657-8118**
 - (fora dos EUA ou do Canadá) **+1-425-951-1330** ou ligue para seu representante local
- **Fax** **+1-425-951-6700**
- **E-mail** ffss-service@fujifilm.com
- **Site** www.sonosite.com

Centro de manutenção da Europa
- Principal: **+31 20 751 2020**
- Suporte em inglês: **+44 14 6234 1151**
- Suporte em francês: **+33 1 8288 0702**
- Suporte em alemão: **+49 69 8088 4030**
- Suporte em italiano: **+39 02 9475 3655**
- Suporte em espanhol: **+34 91 123 8451**

Centro de manutenção da Ásia **+65 6380-5581**

Impresso nos EUA.
Obter ajuda (SonoSite Edge II)

O seguinte foi corrigido no guia do usuário do sistema SonoSite Edge II; a revisão será feita na próxima atualização.

E-mail ffss-service@fujifilm.com

Passos iniciais

O conteúdo a seguir não foi incluído ou estava incorreto nos manuais do usuário dos sistemas SonoSite Edge II e SonoSite SII; as revisões serão feitas na próxima atualização.

Usos previstos

Aplicações para imagiologia da próstata

Pode ser feita uma avaliação da próstata e das estruturas anatômicas adjacentes quanto à presença ou ausência de patologia.

Aplicações para imagiologia superficial

Podem ser avaliados a mama, tireoide, testículos, gânglios linfáticos, hérnias, estruturas musculoesqueléticas, estruturas de tecidos moles, espinha, estruturas oftálmicas e estruturas anatômicas adjacentes quanto à presença ou ausência de patologias. É possível usar o sistema para fornecer orientação por ultrassom para procedimentos de biópsia e drenagem, instalação de acesso vascular e anestesias periféricas.

Configuração do sistema

Configurações de conectividade (SonoSite SII)

Todas as referências ao PDAS devem ser alteradas para SiteLink no manual do usuário do sistema SonoSite SII; a revisão será feita na próxima atualização.

Configuração de conectividade (SonoSite Edge II)

A referência a seguir foi atualizada no manual do usuário do sistema SonoSite Edge II; a revisão será feita na próxima atualização.
Para ativar a conexão sem fio

 Consulte Configurando uma conexão de rede.

Configurações de status da rede

Se a tela Network Status (Status de rede) exibir uma mensagem de falha do dispositivo sem fio, a senha de sua rede pode ter expirado. Certifique-se de ter uma senha de rede atualizada antes de conectar seu dispositivo sem fio.

Geração de imagens

O transdutor C8x tem capacidade de orientação por agulha em ambos os sistemas SonoSite Edge II e SonoSite SII.

Modos de geração de imagens e exames disponíveis por transdutor (SonoSite SII)

As notas de rodapé a seguir estavam ausentes na Tabela 4-5. Modos de geração de imagens e exames disponíveis por transdutor no manual do usuário do sistema SonoSite SII; a revisão será feita na próxima atualização.

a As abreviações para o tipo de exame são as seguintes: Abd = Abdômen, Art = Arterial, Bre = Mama, Crd = Cardíaco, Gyn = Ginecologia, Msk = Musculoesquelético, Neo = Neonatal, Nrv = Nervo, OB = Obstétrico, Oph = Oftálmico, Pro = Próstata, SmP = Pequenas partes, Spn = Espinha, Sup = Superficial, Ven = Venoso.

b As configurações da otimização para 2D são Res, Gen e Pen.

c As configurações de otimização dos Doppler coloridos (CPD e Cores) são baixa, média e alta (sensibilidade ao fluxo) com uma variedade de configurações de PRF para cores dependendo da configuração selecionada.
Medições e cálculos (SonoSite SII)

Cálculos gerais

Cálculo do volume

AVISOS

› Para evitar cálculos incorretos, verifique se os dados do paciente, a data e a hora estão corretos.

› Para evitar diagnósticos incorretos ou ferimentos ao paciente, inicie um novo formulário do paciente antes de iniciar o exame de um novo paciente e efetuar cálculos. Iniciar um novo formulário de dados do paciente irá apagar os dados do paciente anterior. Se o formulário não for apagado primeiro, os dados do paciente anterior se misturarão aos do paciente atual.

O cálculo de volume envolve três medições de distância 2D: D1, D2, e D3. Após todas as medições terem sido salvas, o resultado aparecerá na tela e no relatório do paciente.

O cálculo de volume está disponível nos seguintes tipos de exame: Abdômen, arterial, mama, ginecológico, musculoesquelético, nervo, pequenas partes, venoso e superficial.

Para calcular o volume

Execute as seguintes ações para cada imagem que necessita medir:

1 Em uma imagem congelada 2D, toque em Calcs (Cálculos).

2 Execute as seguintes ações para cada medição necessária:

 a No menu de cálculos, em Volume, selecione o nome da medição.

 Se Volume não estiver disponível em um exame de Gin, selecione Gyn (Gin) e depois selecione Volume.

 b Usando o teclado sensível ao toque ou a tela sensível, posicione os cursores.

 c Toque em Save Calc (Salv cálc) para salvar o cálculo.

 Uma marca de verificação é exibida ao lado de cada medição salva.

3 Para salvar uma tela de um cálculo acabado, toque em 📷.

4 Toque em Back (Voltar) para sair da tela de cálculos.
Referências de medições (SonoSite SII)

As informações a seguir não foram incluídas no manual do usuário do sistema SonoSite SII; a revisão será feita na próxima atualização.

Precisão das medições

Tabela 1: Medicações no Modo M e grau de precisão e intervalos de cálculos

<table>
<thead>
<tr>
<th>Precisão das medições e intervalos no Modo M</th>
<th>Tolerância do sistema</th>
<th>Grau de precisão por</th>
<th>Método de teste</th>
<th>Faixa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distância</td>
<td>< +/- 2% mais 1% da escala completa<sup>a</sup></td>
<td>Aquisição</td>
<td>Espectro<sup>b</sup></td>
<td>0–26 cm</td>
</tr>
<tr>
<td>Tempo</td>
<td>< +/- 2% mais 1% da escala completa<sup>c</sup></td>
<td>Aquisição</td>
<td>Espectro<sup>d</sup></td>
<td>0,01–10 s</td>
</tr>
<tr>
<td>Frequência cardíaca</td>
<td>< +/- 2% mais (Escala completa<sup>c</sup> * Frequência cardíaca/100)%</td>
<td>Aquisição</td>
<td>Espectro<sup>d</sup></td>
<td>5–923 bpm</td>
</tr>
</tbody>
</table>

^aA escala completa referente à distância envolve a profundidade máxima da imagem.
^bFoi utilizado um espectro modelo RMI 413a com atenuação de 0,7 dB/cm MHz.
^cA escala completa para o tempo envolve o tempo total exibido na imagem do gráfico de rolagem.
^dfoi usado um equipamento especial de testes da FUJIFILM SonoSite.

Publicações sobre terminologia e medidas

Referências gerais

Ângulo do quadril/Razão d:D

Redução percentual da área

Redução da área% = [1 - A2(cm²)/A1(cm²)] * 100
em que: A1 = área original do vaso em cm quadrado
 A2 = área reduzida do vaso em cm quadrado
Redução percentual do diâmetro

Redução do diâmetro\% = \[1 - \frac{D2(cm)}{D1(cm)}\] * 100

em que:
D1 = diâmetro original do vaso em cm
D2 = diâmetro reduzido do vaso em cm

Limpeza e Desinfecção

O site a seguir estava correto nos manuais do usuário dos sistemas SonoSite Edge II e SonoSite SII; a revisão será feita na próxima atualização.

www.sonosite.com/products/transducers

A observação a seguir foi atualizada nas tabelas de limpeza e desinfecção.

Consulte a ferramenta relacionada aos produtos de limpeza e desinfetantes disponível em www.sonosite.com/support/cleaners-disinfectants para obter uma lista mais completa dos produtos de limpeza e desinfetantes.

Segurança

Segurança clínica

O aviso a seguir foi atualizado nos manuais do usuário do SonoSite Edge II e SonoSite SII; a revisão será feita na próxima atualização.

AVISO

A FUJIFILM SonoSite não recomenda o uso de dispositivos eletromédicos de alta frequência próximos aos seus sistemas. Os equipamentos da FUJIFILM SonoSite não foram validados para uso com dispositivos ou procedimentos eletrocirúrgicos de alta frequência. O uso de dispositivos eletrocirúrgicos de alta frequência próximos aos seus sistemas pode levar ao comportamento anormal do sistema ou ao desligamento do sistema.

Para evitar o risco de queimaduras, não utilize o transdutor com equipamentos cirúrgicos de alta frequência. Esse risco pode existir na eventualidade de um defeito na conexão do eletrodo neutro cirúrgico de alta frequência.
Compatibilidade eletromagnética

O sistema de ultrassom foi testado e considerado de acordo com os limites de compatibilidade eletromagnética (CEM) da IEC 60601-1-2:2007 e IEC 60601-1-2:2014 para aparelhos médicos. O sistema de ultrassom é adequado para uso no ambiente profissional de saúde. Um equipamento cirúrgico de HF ativo causa elevados distúrbios eletromagnéticos que podem interferir com a operação do sistema de ultrassom. O sistema de ultrassom não deve ser operado dentro de uma sala blindada contra radiofrequência onde estão presentes imagens de ressonância magnética, pois produz elevados distúrbios eletromagnéticos que podem interferir com a operação do sistema de ultrassom. Esses limites foram criados para fornecer uma proteção razoável contra a interferência prejudicial em instalações médicas.
Cuidados

- Equipamentos eletromédicos exigem precauções especiais com relação à CEM e devem ser instalados e operados de acordo com as instruções fornecidas a seguir. Equipamentos portáteis de comunicação por RF (incluindo periféricos, como cabos de antena e antenas externas) devem ser utilizados a uma distância inferior a 30 cm de qualquer uma das peças do sistema de ultrassom, incluindo cabos especificados pela FUJIFILM SonoSite. Equipamentos de comunicação RF portátil e móvel podem ser afetados pelo sistema de ultrassom. A interferência eletromagnética (EMI) de outro equipamento ou fontes de interferência podem resultar em comprometimento do desempenho do sistema de ultrassom. A interferência pode ficar evidenciada na degradação ou distorção da imagem, em leituras imprecisas, na parada da operação do equipamento ou em outros funcionamentos incorretos. Caso isso ocorra, inspecione o local para identificar a fonte da interferência e tome as medidas a seguir para eliminar a(s) fonte(s).
 - Desligue e ligue todos os equipamentos nas proximidades para identificar a fonte da interferência.
 - Reoriente ou troque de lugar a fonte da interferência.
 - Aumente a distância entre a fonte da interferência e o sistema de ultrassom.
 - Procure usar frequências próximas às frequências do sistema de ultrassom.
 - Remova os aparelhos altamente suscetíveis a IEM.
 - Reduza a potência de fontes internas dentro do controle da instalação (como, por exemplo, sistemas de pagers).
 - Identifique com rótulos os aparelhos suscetíveis a IEM.
 - Ensine a equipe clínica a reconhecer possíveis problemas relacionados à IEM.
 - Elimine ou reduza a IEM com soluções técnicas (como blindagem).
 - Restringe o uso de comunicadores pessoais (celulares, computadores) em áreas com aparelhos suscetíveis a IEM.
 - Compartilhe informações relevantes sobre a IEM com outras pessoas, principalmente ao avaliar a compra de novos equipamentos que possam gerar IEM.
 - Compre aparelhos médicos que estejam de acordo com as Normas EMC IEC 60601-1-2.

- Não empilhe outro equipamento sobre o sistema de ultrassom ou use outro equipamento muito próximo ou adjacente ao sistema de ultrassom. Se empilhar ou usar outro equipamento muito próximo for inevitável, será preciso manter o sistema em observação, para verificar se está funcionando normalmente.
Transmissão sem fio

Os sistemas de ultrassom SonoSite Edge II e SII dispõem de duas soluções sem fio.

- O Dongle USB (Panda) sem fio é um pequeno adaptador sem fio que se conecta à porta USB na:
 - lateral direita do sistema de ultrassom Edge II;
 - parte superior do sistema de ultrassom SII.
- O módulo de segurança e sem fio (Laird) é um módulo que se monta na:
 - tampa do sistema de ultrassom Edge II e, em seguida, se conecta ao sistema através de um cabo USB angulado à direita
 - Braço de suporte do transdutor do sistema de ultrassom SII e, em seguida, se conecta ao sistema através de um cabo USB de 30 centímetros

Consulte as informações abaixo para obter as informações de transmissão para cada uma.

Dongle USB (Panda) sem fio

O Dongle USB sem fio usa as faixas de frequência Industrial, Científica e Médica (ISM) de 2.412 a 2.4835 GHz, dependendo da regulamentação do seu país. O dongle utiliza os seguintes métodos de transmissão:

- IEEE 802.11b com espectro de dispersão de sequência direta (DSSS) a 19 dBm: Taxa de pico 54Mbps, Transferência de pico: 27Mbps
- IEEE 802.11g com Multiplexação de Divisão de Frequência Ortogonal (OFDM) a 16 dBm: Taxa de pico 54Mbps, Transferência de pico: 27Mbps
- IEEE 802.11n com Multiplexação de Divisão de Frequência Ortogonal (OFDM) a 15 dBm:
 - 1T1R. Taxa de pico: 150 Mbps, Transferência de pico: 90 Mbps
 - 1T2R. Taxa de pico: 300 Mbps, transferência de pico: Rx 160 Mbps
 - 2T2R. Taxa de pico: 300 Mbps, Transferência de pico: Rx 260 Mbps
Módulo de segurança e sem fio (Laird)

O Módulo de segurança e sem fio usa faixas de frequência Industrial, Científica e Médica (ISM) de 1.400 a 2.4835 GHz, e de 5.100 a 5.800 GHz. O módulo implanta quatro métodos diferentes de transmissão:

- IEEE 802.11a com multiplexação por divisão de frequências ortogonais (OFDM) em 11 dBm ± 2 dBm a 54 Mbps
- IEEE 802.11b com espectro de dispersão de sequência direta (DSSS) em 16 dBm ± 2,0 dBm a 11 Mbps
- IEEE 802.11g com multiplexação por divisão de frequências ortogonais (OFDM) em 13 dBm ± 2,0 dBm a 54 Mbps
- IEEE 802.11n com multiplexação por divisão de frequências ortogonais (OFDM) em 12 dBm ± 2,0 dBm (802.11gn) a MCS7

Acessórios e periféricos compatíveis (SonoSite Edge II)

Você pode usar esses acessórios da FUJIFILM SonoSite e periféricos de terceiros com o SonoSite Edge II.

AVISOS

- O uso de acessórios com sistemas médicos que não o sistema de ultrassom Edge pode resultar em aumento de emissões ou redução da imunidade do sistema médico.
- O uso de acessórios que não os especificados pode resultar em aumento de emissões ou redução da imunidade do sistema de ultrassom.
- O sistema de ultrassom não deve ser usado em um estabelecimento doméstico ou conectado à rede de alimentação pública.

Tabela 2: Acessórios e periféricos compatíveis com o sistema de ultrassom Edge II

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor rC60xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HFL38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HFL50x</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tabela 2: Acessórios e periféricos compatíveis com o sistema de ultrassom Edge II

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transdutor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor L25x padrão/blindado</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transdutor L38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor L52x a</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transdutor P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor rP19x padrão/blindado</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor TEExi</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Leitor de código de barras</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Bateria do PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Bateria</td>
<td>—</td>
</tr>
<tr>
<td>Bateria PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Impressora monocromática</td>
<td>—</td>
</tr>
<tr>
<td>Cabo de alimentação da impressora monocromática</td>
<td>1 m</td>
</tr>
<tr>
<td>Impressora colorida</td>
<td>—</td>
</tr>
<tr>
<td>Cabo de alimentação da impressora colorida</td>
<td>1 m</td>
</tr>
<tr>
<td>Cabo de vídeo da impressora colorida</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Eletrodos do ECG</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Módulo ECG</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cabo escravo de ECG</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Unidade de acoplamento SonoSite Edge II</td>
<td>—</td>
</tr>
<tr>
<td>SonoSite Edge II Pedestal</td>
<td>—</td>
</tr>
<tr>
<td>Pedal</td>
<td>3 m</td>
</tr>
<tr>
<td>Mouse mini</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Cabo de alimentação (sistema)</td>
<td>3 m</td>
</tr>
</tbody>
</table>
Tabela 2: Acessórios e periféricos compatíveis com o sistema de ultrassom Edge II

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonte de alimentação com cabo CC</td>
<td>2 m</td>
</tr>
<tr>
<td>Cabo da fonte de alimentação CA</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
<tr>
<td>Conector Triplo de Transdutores</td>
<td>—</td>
</tr>
<tr>
<td>Adaptador USB sem fio</td>
<td>—</td>
</tr>
</tbody>
</table>

Para transdutores, o comprimento máximo do cabo é medido entre os aliviadores de tensão. O comprimento declarado não inclui os comprimentos dos cabos nos seguintes locais: debaixo dos aliviadores de tensão, dentro do compartimento do transdutor ou dentro do conector do transdutor.

aO transdutor L52x é para uso exclusivamente veterinário.

Acessórios e periféricos compatíveis (SonoSite SII)

Você pode usar esses acessórios FUJIFILM SonoSite e periféricos de terceiros com o sistema de ultrassom SonoSite SII.

AVISOS

- O uso de acessórios com sistemas médicos que não o sistema de ultrassom SonoSite SII pode resultar em aumento de emissões ou redução da imunidade do sistema médico.
- O uso de acessórios que não os especificados pode resultar em aumento de emissões ou redução da imunidade do sistema de ultrassom.

Tabela 3: Acessórios e periféricos compatíveis com o sistema de ultrassom SonoSite SII

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor C8x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor C35x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor rC60xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HFL38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tabela 3: Acessórios e periféricos compatíveis com o sistema de ultrassom SonoSite SII

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HSL25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transdutor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor L25x padrão/blindado</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transdutor L38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transdutor P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor rP19x padrão/blindado</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Leitor de código de barras</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Bateria do PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Bateria</td>
<td>—</td>
</tr>
<tr>
<td>Bateria PowerPack</td>
<td>—</td>
</tr>
<tr>
<td>Impressora monocromática</td>
<td>—</td>
</tr>
<tr>
<td>Cabo de alimentação da impressora</td>
<td>1 m</td>
</tr>
<tr>
<td>monocromática</td>
<td></td>
</tr>
<tr>
<td>Cabo de controle da impressora</td>
<td>1,8 m</td>
</tr>
<tr>
<td>monocromática</td>
<td></td>
</tr>
<tr>
<td>Cabo de vídeo da impressora</td>
<td>1,9 m</td>
</tr>
<tr>
<td>monocromática</td>
<td></td>
</tr>
<tr>
<td>Pedal</td>
<td>3 m</td>
</tr>
<tr>
<td>Cabo de extensão USB do pedal</td>
<td>2 m</td>
</tr>
<tr>
<td>SonoSite SII Pedestal</td>
<td>—</td>
</tr>
<tr>
<td>Cabo de alimentação (sistema)</td>
<td>3 m</td>
</tr>
<tr>
<td>Fonte de alimentação com cabo CC</td>
<td>2 m</td>
</tr>
<tr>
<td>Cabo da fonte de alimentação CA</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>—</td>
</tr>
<tr>
<td>Adaptador USB sem fio</td>
<td>—</td>
</tr>
</tbody>
</table>
Declaração do fabricante

As tabelas desta seção documentam o ambiente para a utilização prevista e os níveis de conformidade do sistema em relação a CEM. Para o máximo desempenho, certifique-se de utilizar o sistema no ambiente descrito na tabela abaixo.

O sistema deve ser usado no ambiente eletromagnético especificado a seguir.

<table>
<thead>
<tr>
<th>Teste de emissões</th>
<th>Conformidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissões de RF CISPR 11</td>
<td>Grupo 1</td>
<td>Os sistema de ultrassom Edge II e SII usam energia de RF somente para o seu funcionamento interno. Portanto, suas emissões de RF são muito baixas e não é provável que causem interferências em equipamentos eletrônicos próximos.</td>
</tr>
<tr>
<td>Emissões de RF CISPR 11</td>
<td>Classe A</td>
<td>Os sistema de ultrassom Edge II e SII são adequados para uso em todos os estabelecimentos, com exceção dos residenciais ou daqueles diretamente conectados à rede elétrica pública de baixa tensão que alimenta os prédios residenciais.</td>
</tr>
<tr>
<td>Emissões de harmônicas IEC 61000-3-2</td>
<td>Classe A</td>
<td></td>
</tr>
<tr>
<td>Flutuações de tensão/emissões instáveis IEC 61000-3-3</td>
<td>Em conformidade</td>
<td></td>
</tr>
</tbody>
</table>
O sistema deve ser usado no ambiente eletromagnético especificado a seguir.

Tabela 5: Declaração do fabricante – Imunidade eletromagnética segundo a IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descarga eletrostática (ESD)</td>
<td>Contato de ± 2,0 KV, ± 4,0 KV, ± 6,0 KV Ar de ± 2,0 KV, ± 4,0 KV, ± 8,0 KV</td>
<td>Contato de ± 2,0 KV, ± 4,0 KV, ± 6,0 KV Ar de ± 2,0 KV, ± 4,0 KV, ± 8,0 KV</td>
<td>O piso deve ser de madeira, concreto ou cerâmica. Caso o piso seja revestido de material sintético, a umidade relativa deverá ser de pelo menos 30%.</td>
</tr>
<tr>
<td>Transientes elétricos rápidos</td>
<td>± 2 KV na rede elétrica ± 1 KV em linhas de sinal</td>
<td>± 2 KV na rede elétrica ± 1 KV em linhas de sinal</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surto</td>
<td>±1 KV linha(s) a linha(s) ±2 KV linha(s) ao solo</td>
<td>±1 KV linha(s) a linha(s) ±2 KV linha(s) ao solo</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico.</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quedas de tensão, interrupções breves e variações de tensão nas linhas de entrada da fonte de alimentação</td>
<td><5% U_T (queda de >95% em U_T) por 0,5 ciclo 40% U_T (queda de 60% em U_T) para 5 ciclos 70% U_T (queda de 30% em U_T) para 25 ciclos <5% U_T (queda de >95% em U_T) por 5 s</td>
<td><5% U_T (queda de >95% em U_T) para 0,5 ciclo 40% U_T (queda de 60% em U_T) para 5 ciclos 70% U_T (queda de 30% em U_T) para 25 ciclos <5% U_T (queda de >95% em U_T) por 5 s</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico. Caso o usuário do sistema de ultrassom FUJIFILM SonoSite exija operação contínua durante as interrupções de energia, é aconselhável alimentar o sistema FUJIFILM SonoSite por bateria ou através de uma fonte de alimentação ininterrupta.</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 5: Declaração do fabricante – Imunidade eletromagnética segundo a IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo magnético de frequência de potência IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Em caso de distorção da imagem, talvez seja necessário posicionar o sistema de ultrassom FUJIFILM SonoSite mais distante de fontes de campos magnéticos de frequência de potência ou instalar blindagem magnética. O campo magnético de frequência de potência deve ser medido no local previsto da instalação para garantir que seja suficientemente baixo.</td>
</tr>
<tr>
<td>RF conduzida IEC 61000-4-6</td>
<td>3 Vrms 150 kHz a 80 MHz</td>
<td>3 Vrms</td>
<td>Os equipamentos móveis e portáteis de comunicação em RF devem ser mantidos a uma distância recomendada de qualquer componente do sistema de ultrassom FUJIFILM SonoSite, inclusive cabos. Essa distância é calculada a partir da equação aplicável à frequência do transmissor. Distância recomendada $d = 1,2 \sqrt{P}$</td>
</tr>
</tbody>
</table>
Tabela 5: Declaração do fabricante – Imunidade eletromagnética segundo a IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
</table>
| RF irradiada IEC 61000-4-3 | 3 V/m 80 MHz a 2,5 GHz | 3 V/m 80 MHz a 2,5 GHz | $d = 1,2 \sqrt{P}$ 80 MHz a 800 MHz
 $d = 2,3 \sqrt{P}$ 800 MHz a 2,5 GHz
 Em que P é o valor nominal máximo da potência de saída do transmissor em Watts (10), de acordo com o fabricante do transmissor, e é a distância recomendada em metros (m).
 As intensidades dos campos dos transmissores de RF fixos, conforme determinado por um estudo eletromagnético do local, devem ser inferiores ao nível de compatibilidade em cada faixa de frequência.
 Pode ocorrer interferência na proximidade de um equipamento marcado com o símbolo a seguir:
 ![Fonte de radiação não ionizante](IEC 60417 Nº 417-IEC-5140: “Fonte de radiação não ionizante”) |
| **Observação** | U_T é a tensão da rede de corrente alternada antes da aplicação do nível de teste.
 Em 80 MHz e 800 MHz, aplica-se a faixa de frequência mais alta.
 Essas diretrizes não se aplicam a todas as situações. A propagação eletromagnética é afetada pela absorção e pelo reflexo de estruturas, objetos e pessoas. |

a. As intensidades dos campos de transmissores fixos, como estações base para radiotelefones (celulares/sem fio) e rádios móveis/fixos, radioamador, radiodifusão AM e FM e transmissão de TV, não podem ser previstas na teoria com precisão. Para avaliar o ambiente eletromagnético em função da presença de transmissores de RF fixos, deve-se considerar a possibilidade de realizar um estudo eletromagnético do local. Se a intensidade do campo, medida no local de uso do sistema de ultrassom FUJIFILM SonoSite, exceder o nível aplicável de compatibilidade RF acima, o sistema FUJIFILM SonoSite deverá ser observado para verificar se está funcionando normalmente. Caso seja observado um desempenho anormal, talvez sejam necessárias medições adicionais, como reorientar o sistema de ultrassom FUJIFILM SonoSite ou trocá-lo de lugar.

b. Na faixa de frequência de 150 kHz a 80 MHz, as intensidades dos campos devem ser inferiores a 3 V/m.
Tabela 6: Declaração do fabricante – Imunidade eletromagnética segundo a IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descarga eletrostática (ESD)</td>
<td>± 8,0KV, contato ± 2,0KV, ± 4,0KV, ± 8,0KV ar, ± 15KV</td>
<td>± 8,0KV, ± 4,0KV, ± 8,0KV ar, ± 15KV</td>
<td>O piso deve ser de madeira, concreto ou cerâmica. Caso o piso seja revestido de material sintético, a umidade relativa deverá ser de pelo menos 30%.</td>
</tr>
<tr>
<td>Transientes elétricos rápidos</td>
<td>± 2 KV na rede elétrica ± 1 KV em linhas de sinal</td>
<td>± 2 KV na rede elétrica ± 1 KV em linhas de sinal</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico.</td>
</tr>
<tr>
<td>Surto</td>
<td>±1 KV linha(s) a linha(s) ±2 KV linha(s) ao solo</td>
<td>±1 KV linha(s) a linha(s) ±2 KV linha(s) ao solo</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico.</td>
</tr>
<tr>
<td>Quedas de tensão, interrupções breves e variações de tensão nas linhas de entrada da fonte de alimentação</td>
<td>0% U_T para 0,5 ciclo 0% U_T para 5 ciclos 70% U_T (queda de 30% em U_T) por 500 ms <5% U_T (queda de >95% em U_T) por 5 s</td>
<td>0% U_T para 0,5 ciclo 0% U_T para 5 ciclos 70% U_T (queda de 30% em U_T) por 500 ms <5% U_T (queda de >95% em U_T) por 5 s</td>
<td>A qualidade da energia da rede elétrica deve corresponder à de um ambiente comercial ou hospitalar típico. Caso o usuário do sistema de ultrassom FUJIFILM SonoSite exija operação contínua durante as interrupções de energia, é aconselhável alimentar o sistema FUJIFILM SonoSite por bateria ou através de uma fonte de alimentação ininterrupta.</td>
</tr>
<tr>
<td>Campo magnético de frequência de potência</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>Em caso de distorção da imagem, talvez seja necessário posicionar o sistema de ultrassom FUJIFILM SonoSite mais distante de fontes de campos magnéticos de frequência de potência ou instalar blindagem magnética. O campo magnético de frequência de potência deve ser medido no local previsto da instalação para garantir que seja suficientemente baixo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF conduzida</td>
<td>3 Vrms 150 kHz a 80 MHz</td>
<td>3 Vrms</td>
<td>Os equipamentos móveis e portáteis de comunicação em RF devem ser mantidos a uma distância recomendada de qualquer componente do sistema de ultrassom FUJIFILM SonoSite, inclusive cabos. Essa distância é calculada a partir da equação aplicável à frequência do transmissor. Distância recomendada $d = 1,2 \sqrt{P}$</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>6 Vrms em bandas de ISM</td>
<td>6 Vrms em bandas de ISM</td>
<td></td>
</tr>
<tr>
<td>RF irradiada</td>
<td>3 V/m 80 MHz a 2,7 GHz</td>
<td>3 V/m 80 MHz a 2,7 GHz</td>
<td>Em que P é o valor nominal máximo da potência de saída do transmissor em Watts (10), de acordo com o fabricante do transmissor, e é a distância recomendada em metros (m).</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>80 MHz a 2,7 GHz</td>
<td>80 MHz a 2,7 GHz</td>
<td>As intensidades dos campos dos transmissores de RF fixos, conforme determinado por um estudo eletromagnético do local, devem ser inferiores ao nível de compatibilidade em cada faixa de frequência. Pode ocorrer interferência na proximidade de um equipamento marcado com o símbolo a seguir: (IEC 60417 N° 417–IEC–5140: “Fonte de radiação não ionizante”)</td>
</tr>
</tbody>
</table>

Campos de proximidade de equipamentos de comunicação sem fio

Segundo a 60601-1-2:2014 Tabela 9

Segundo a 60601-1-2:2014 Tabela 9

Declaração do fabricante
Tabela 6: Declaração do fabricante – Imunidade eletromagnética segundo a IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Teste de imunidade</th>
<th>Nível de teste IEC 60601</th>
<th>Nível de compatibilidade</th>
<th>Ambiente eletromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observação</td>
<td>U_T é a tensão da rede de corrente alternada antes da aplicação do nível de teste. Em 80 MHz e 800 MHz, aplica-se a faixa de frequência mais alta. Essas diretrizes não se aplicam a todas as situações. A propagação eletromagnética é afetada pela absorção e pelo reflexo de estruturas, objetos e pessoas.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. As intensidades dos campos de transmissores fixos, como estações base para radiotelefones (celulares/sem fio) e rádios móveis/fixos, radioamador, radiodifusão AM e FM e transmissão de TV, não podem ser previstas na teoria com precisão. Para avaliar o ambiente eletromagnético em função da presença de transmissores de RF fixos, deve-se considerar a possibilidade de realizar um estudo eletromagnético do local. Se a intensidade do campo, medida no local de uso do sistema de ultrassom FUJIFILM SonoSite, exceder o nível aplicável de compatibilidade RF acima, o sistema FUJIFILM SonoSite deverá ser observado para verificar se está funcionando normalmente. Caso seja observado um desempenho anormal, talvez sejam necessárias medições adicionais, como reorientar o sistema de ultrassom FUJIFILM SonoSite ou trocá-lo de lugar.
- b. Na faixa de frequência de 150 kHz a 80 MHz, as intensidades dos campos devem ser inferiores a 3 V/m.

Mensagem de cuidado da FCC: Este equipamento foi testado e considerado em conformidade com os limites para um dispositivo digital de Classe A, de acordo com a parte 15 das regras da FCC. Estes limites são projetados para fornecer proteção razoável contra interferências nocivas quando o equipamento é operado em um ambiente comercial. Este equipamento gera, usa e pode irradiar energia de rádiofrequência e, se não instalado e usado de acordo com o manual de instruções, pode causar interferência prejudicial nas comunicações por rádio. É provável que a operação desse equipamento em uma área residencial cause interferências prejudiciais. Nesse caso, o usuário deverá corrigir a interferência suportando os custos associados.

Acessórios e periféricos compatíveis

O aviso a seguir foi adicionado aos manuais do usuário dos sistemas SonoSite Edge II e SonoSite SII; as revisões serão feitas na próxima atualização.

AVISO

Se periféricos estiverem conectados ao sistema, verifique se o sistema e os periféricos estão conectados ao mesmo circuito de ramificação da rede CA.
Identificação dos símbolos

Tabela 7: Símbolos de padrão de rotulagem

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fabricante</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1 Requisitos gerais</td>
<td>5.1.1</td>
<td>Indica o fabricante do dispositivo médico, conforme as diretrizes da UE 90/385/EEC, 93/42/EEC e 98/79/EC</td>
</tr>
<tr>
<td></td>
<td>Radiação eletromagnética não ionizante</td>
<td>IEC 60601-1-2:2007 Equipamentos eletromédicos, Parte 1-2: Requisitos gerais para desempenho essencial e segurança básica – Norma colateral: compatibilidade eletromagnética</td>
<td>5.1.1</td>
<td>Indica níveis normalmente elevados e potencialmente perigosos de radiação não ionizante ou para indicar equipamentos ou sistemas por exemplo, na área eletromédica que incluam transmissores de RF ou que apliquem energia eletromagnética RF intencionalmente para fins de diagnóstico ou tratamento</td>
</tr>
<tr>
<td></td>
<td>Representante autorizado da Comunidade Europeia</td>
<td>ISO 15223-1 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos.</td>
<td>5.1.2</td>
<td>Indica o representante autorizado na Comunidade Europeia</td>
</tr>
<tr>
<td></td>
<td>Número de série</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.1.7</td>
<td>Indica o número de série do fabricante para que um determinado dispositivo médico possa ser identificado</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Título</td>
<td>Organização de desenvolvimento de normas</td>
<td>Número de referência</td>
<td>Descrição</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>![REF]</td>
<td>Número do catálogo</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.1.6</td>
<td>Indica o número do catálogo do fabricante para que o dispositivo médico possa ser identificado</td>
</tr>
<tr>
<td>![exclamation]</td>
<td>Cuidado</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.4.4</td>
<td>Indica a necessidade de o usuário consultar as instruções de uso para obter informações importantes sobre advertências, tais como avisos e precauções que, devido a uma variedade de razões, não podem ser apresentadas no próprio dispositivo médico</td>
</tr>
<tr>
<td>![glass]</td>
<td>Frágil manuseie com cuidado</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.3.1</td>
<td>Indica que um dispositivo médico pode ser quebrado ou danificado se não for manuseado com cuidado</td>
</tr>
<tr>
<td>![umbrella]</td>
<td>Manter seco</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.3.4</td>
<td>Indica que um dispositivo médico precisa ser protegido da umidade</td>
</tr>
<tr>
<td>![thermometer]</td>
<td>Limite de temperatura</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.3.7</td>
<td>Indica os limites de temperatura aos quais o dispositivo médico pode ser exposto com segurança</td>
</tr>
</tbody>
</table>

Identificação dos símbolos
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limites de pressão atmosférica</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.3.9</td>
<td>Indica os limites de pressão atmosférica aos quais o dispositivo médico pode ser exposto com segurança</td>
</tr>
<tr>
<td>%</td>
<td>Limitações de umidade</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.3.8</td>
<td>Indica o intervalo de umidade ao qual o dispositivo médico pode ser exposto com segurança</td>
</tr>
<tr>
<td>IPX7</td>
<td>Grau de proteção para a entrada fornecida pelo invólucro</td>
<td>IEC 60601-1 Equipamentos Médicos Elétricos Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.3</td>
<td>Protegido contra os efeitos da imersão temporária</td>
</tr>
<tr>
<td></td>
<td>Consulte o Manual/folheto de instruções</td>
<td>IEC 60601-1 Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.2-10</td>
<td>Siga as instruções de uso (de acordo com a IEC 60601-1)</td>
</tr>
<tr>
<td></td>
<td>Consulte as instruções de uso</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.4.3</td>
<td>Indica a necessidade do usuário consultar as instruções de uso</td>
</tr>
<tr>
<td></td>
<td>Corrente alternada</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>5032</td>
<td>Indica na placa de classificação que o equipamento é adequado apenas para corrente alternada, a fim de identificar os terminais apropriados</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marca CE</td>
<td>Diretiva 93/42/CEE do Conselho</td>
<td>Artigo 17 Anexo XII</td>
<td>Significa Conformidade Técnica Europeia</td>
</tr>
<tr>
<td></td>
<td>Conformité Européene</td>
<td>Diretiva 93/42/CEE do Conselho</td>
<td>Artigo 17 Anexo XII</td>
<td>Indica conformidade técnica Europeia e identificação do organismo responsável notificado pela execução dos procedimentos previstos nos Anexos II, IV, V e VI.</td>
</tr>
<tr>
<td></td>
<td>Tensão perigosa</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>5036</td>
<td>Indica riscos resultantes da tensão perigosa</td>
</tr>
<tr>
<td></td>
<td>Limite de empilhamento por número</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>2403</td>
<td>Indica que os itens não devem ser empilhados verticalmente acima do número especificado de itens</td>
</tr>
<tr>
<td></td>
<td>Cuidado, quente</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>5041</td>
<td>Indica que o item marcado pode estar quente e não deve ser tocado sem tomar precaução</td>
</tr>
<tr>
<td></td>
<td>Cuidado, perigo de campo magnético estático</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>6204</td>
<td>Identifica áreas com campos magnéticos e forças estáticas potencialmente perigosas em uma instalação</td>
</tr>
<tr>
<td></td>
<td>Partes aplicadas do tipo BF</td>
<td>IEC 60601-1 Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.2-10</td>
<td>Identifica uma peça aplicada do tipo BF, em conformidade com a norma IEC 60601-1</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Heart]</td>
<td>Desfibrilação Partes aplicadas do tipo CF</td>
<td>IEC 60601-1 Equipamentos Médicos Elétricos Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.1-27</td>
<td>Identifica uma peça aplicada do tipo CF à prova de desfibrilação, em conformidade com a norma IEC 60601-1</td>
</tr>
<tr>
<td>![Triangle]</td>
<td>Dispositivo sensível à eletrostática</td>
<td>IEC 60417:2002 Símbolos gráficos para uso em equipamentos</td>
<td>5134</td>
<td>Indica pacotes contendo dispositivos sensíveis à eletrostática, ou Identifica um dispositivo ou um conetor que não foi testado quanto à imunidade à descarga eletrostática</td>
</tr>
<tr>
<td>![LOT]</td>
<td>Código de partida, código de data ou tipo do código de lote do número de controle</td>
<td>ISO 15223-1 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.1.5</td>
<td>Indica o código de lote do fabricante para que o código de partida ou o código de lote possa ser identificado</td>
</tr>
<tr>
<td>![Biohazard]</td>
<td>Risco biológico</td>
<td>ISO 7010 – Símbolos gráficos -- Cores de segurança e sinais de segurança</td>
<td>W009</td>
<td>Para aviso sobre perigo biológico</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Símbolos de segurança INMETRO</td>
<td>—</td>
<td>—</td>
<td>Indica organismo de certificação credenciado no Brasil pelo Instituto Nacional de Padronização e Qualidade Industrial de Metrologia (National Institute of Metrology Standardization and Industry Quality (INMETRO))</td>
</tr>
<tr>
<td></td>
<td>Marca de certificação da Canadian Standards Association (Associação Canadense de Padrões)</td>
<td>—</td>
<td>—</td>
<td>A marca de certificação CSA significa que o produto está em conformidade com os requisitos aplicáveis das normas CSA e ANSI/UL e está autorizado para uso no Canadá e nos EUA.</td>
</tr>
<tr>
<td></td>
<td>Reciclar: Equipamento eletrônico</td>
<td>BS EN 50419:2016 Marca de equipamento elétrico e eletrônico em conformidade com a Diretiva 2012/19/UE (WEEE).</td>
<td>Anexo IX</td>
<td>Não coloque no lixo</td>
</tr>
<tr>
<td></td>
<td>Reciclar corrugado</td>
<td>—</td>
<td>—</td>
<td>A caixa de transporte é fabricada em cartão corrugado e deve ser reciclada em conformidade</td>
</tr>
<tr>
<td></td>
<td>Data de fabricação</td>
<td>ISO 7000 - Símbolos gráficos para uso em equipamentos</td>
<td>5.1.3</td>
<td>Para indicar a data em que um produto foi fabricado</td>
</tr>
<tr>
<td></td>
<td>Corrente contínua (CC)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gel</td>
<td>—</td>
<td>—</td>
<td>Reciclar papel</td>
</tr>
<tr>
<td></td>
<td>Resy - Símbolo de reciclagem</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Grau de proteção para a entrada fornecida pelo invólucro</td>
<td>IEC 60601-1 Equipamentos Médicos Elétricos Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.3</td>
<td>Protegido contra os efeitos de imersão temporária em água. Pode ser imerso</td>
</tr>
<tr>
<td></td>
<td>Grau de proteção para a entrada fornecida pelo invólucro</td>
<td>IEC 60601-1 Equipamentos Médicos Elétricos Parte 1: Requisitos gerais para desempenho essencial e segurança básica.</td>
<td>D.3</td>
<td>Protegido contra os efeitos de imersão temporária em água. Equipamento à prova de água</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica manusear com cuidado</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica seguir as instruções do fabricante em relação ao tempo de desinfecção</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indica desinfetar o transdutor</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>![símbolo]</td>
<td>Carga de peso máxima</td>
<td>IEC 60601-1 Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica</td>
<td>7.2.21</td>
<td>Indica o peso total do equipamento, incluindo a carga de trabalho segura</td>
</tr>
<tr>
<td>![símbolo]</td>
<td>Marca de certificação de Underwriters Laboratories</td>
<td>—</td>
<td>—</td>
<td>Marca de certificação somente para riscos de choque elétrico, incêndio e mecânicos</td>
</tr>
<tr>
<td>![símbolo]</td>
<td>Certificação de produto pela UL</td>
<td>—</td>
<td>—</td>
<td>O produto ou a empresa atendeu às rigorosas normas de segurança com êxito.</td>
</tr>
<tr>
<td>![símbolo]</td>
<td>Controle da poluição na China (10)</td>
<td>ISO 7000:2014 Símbolos gráficos para uso em equipamentos</td>
<td>1135</td>
<td>Controle da poluição Logotipo. (Aplicável a todas as peças/produtos listados na tabela de divulgação RoHS da China. pode não aparecer na parte externa de algumas peças/produtos devido a limitações de espaço.)</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marca de Certificação Compulsória da China (China Compulsory Certificate) ("Marca CCC"). Uma marca de segurança compulsória que atesta a conformidade com as normas nacionais chinesas de muitos produtos vendidos na República Popular da China.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Esterilizado usando óxido de etileno</td>
<td>ISO 15223-1 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.2.3</td>
<td>Indica um dispositivo médico esterilizado usando óxido de etileno</td>
</tr>
<tr>
<td></td>
<td>Esterilizado usando radiação</td>
<td>ISO 15223-1 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.2.4</td>
<td>Indica um dispositivo médico esterilizado usando radiação</td>
</tr>
</tbody>
</table>
Tabela 7: Símbolos de padrão de rotulagem (continuação)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Título</th>
<th>Organização de desenvolvimento de normas</th>
<th>Número de referência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>(somente SII) Número do catálogo</td>
<td>ISO 15223-1:2016 Dispositivos médicos – Símbolos a utilizar nos rótulos, rotulagem e informação a fornecer com os dispositivos médicos – Parte 1: Requisitos gerais</td>
<td>5.1.6</td>
<td>Indica o número do catálogo do fabricante para que o dispositivo médico possa ser identificado.</td>
</tr>
<tr>
<td></td>
<td>(somente SII) Tensão perigosa</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>5036</td>
<td>Indica riscos resultantes da tensão perigosa</td>
</tr>
<tr>
<td></td>
<td>(somente SII) Para uso exclusivo em ambientes internos</td>
<td>ISO 7000 / IEC 60417 Símbolos gráficos para uso em equipamentos</td>
<td>5957</td>
<td>Identifica equipamento elétrico projetado principalmente para uso em ambientes internos</td>
</tr>
</tbody>
</table>

Especificações

Transdutores compatíveis (SonoSite SII)

A seção redundante a seguir foi removida do manual do usuário do SonoSite SII. As mesmas informações são apresentadas na Tabela 9-2 do manual do usuário do sistema; a revisão será feita na próxima atualização.

Tabela 8: Transdutores compatíveis

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor C11x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor rC60xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HFL38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HFL50x</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor HSL25x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transdutor ICTx</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Transdutor L25x</td>
<td>2,3 m</td>
</tr>
<tr>
<td>Transdutor L38xi padrão/blindado</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>
Tabela 8: Transdutores compatíveis (continuação)

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Comprimento máximo do cabo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transdutor L52x</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Transdutor P10x</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Transdutor rP19x padrão/blindado</td>
<td>1,8 m</td>
</tr>
</tbody>
</table>

Para transdutores, o comprimento máximo do cabo é medido entre os aliviadores de tensão. O comprimento declarado não inclui os comprimentos dos cabos nos seguintes locais: debaixo dos aliviadores de tensão, dentro do compartimento do transdutor e dentro do conector do transdutor.

Normas
de segurança eletromecânica

Tabela 9: Normas de segurança eletromecânica

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/AAMI ES60601-1:2005/(R) 2012, e</td>
<td>Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica (Edição consolidada 3.1)</td>
</tr>
<tr>
<td>A1:2012</td>
<td></td>
</tr>
<tr>
<td>CAN/CSA C22.2, Nº 60601-1:2014</td>
<td>Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica</td>
</tr>
<tr>
<td>(Edição 3.1)</td>
<td></td>
</tr>
<tr>
<td>IEC 60601-1:2012 (Edição 3.1)</td>
<td>Equipamentos eletromédicos, Parte 1: Requisitos gerais para desempenho essencial e segurança básica</td>
</tr>
<tr>
<td>IEC 60601-2-37:2015</td>
<td>Equipamentos eletromédicos, Parte 2–37: Requisitos particulares para desempenho essencial e segurança básica de equipamento de monitoramento e diagnóstico médico por ultrassom</td>
</tr>
<tr>
<td>IEC 60601-1-6:2013</td>
<td>Equipamentos eletromédicos, Parte 1–6: Requisitos gerais para desempenho essencial e segurança básica – Norma colateral: Usabilidade</td>
</tr>
</tbody>
</table>
Saída acústica

Princípio ALARA

Aplicação do princípio ALARA

O modo de geração de imagens do sistema selecionado pelo operador de ultrassom qualificado é determinado pelas informações de diagnóstico necessárias. A geração de imagens bidimensionais oferece informações anatômicas; a geração de imagens de CPD fornece informações sobre a energia ou amplitude do sinal Doppler ao longo do tempo em um dado local anatômico e é usada para detectar a presença de fluxo sanguíneo; a geração de imagens em cores fornece informações relativas à energia ou amplitude do sinal do Doppler ao longo do tempo em uma determinada região anatômica e é usada para detectar a presença, a velocidade e a direção do fluxo sanguíneo; a Imagem Harmônica Tecidual (THI) usa as frequências mais altas recebidas para reduzir o desarranjo, os artefatos e melhorar a resolução da imagem bidimensional (2D). A compreensão da natureza do modo de geração de imagens que está sendo utilizado permite que o operador de ultrassom qualificado aplique o princípio ALARA.

O uso prudente do ultrassom requer que a exposição do paciente ao ultrassom se restrinja à mais baixa potência do ultrassom pelo menor período de tempo necessário para se obterem resultados diagnósticos aceitáveis. Tudo depende do tipo de paciente, tipo de exame, histórico do paciente, facilidade ou dificuldade de obtenção de informações úteis para o diagnóstico e aquecimento localizado potencial do paciente devido à temperatura da superfície do transdutor.

O sistema foi projetado por forma a garantir que a temperatura na superfície do transdutor não exceda o limite estabelecido na IEC 60601-2-37: Requisitos particulares para a segurança de equipamentos médicos de diagnóstico e monitorização por ultrassom. Consulte “Aumento de temperatura da superfície do transdutor” na página 10-9. Em caso de defeito do aparelho, controles redundantes limitam a potência do transdutor. Isso é possível graças a um projeto elétrico que limita tanto a corrente quanto a voltagem da fonte de alimentação ao transdutor.

O ecografista utiliza os controles do sistema para ajustar a qualidade da imagem e limitar a saída do ultrassom. Os controles do sistema dividem-se em três categorias relativas a saída: os que afetam diretamente a saída, os que afetam indiretamente a saída e os receptores.
Controles diretos

O sistema não ultrapassa uma intensidade média temporal de pico espacial (IMTPE) de 720 mW/cm² para todos os modos de geração de imagens. (Para o exame oftálmico ou orbital, a saída acústica se restringe aos seguintes valores: A IMTPE não excede 50 mW/cm²; o IT não excede 1,0 e o IM não excede 0,23.) Os valores de índice mecânico (IM) e índice térmico (IT) podem atingir valores maiores que 1,0 em alguns transdutores em determinados modos de geração de imagens. É possível monitorar os valores de IM e IT e ajustar os controles para reduzi-los. Consulte “Diretrizes para redução de IM e TI -3” na página 10-22. Além disso, uma das maneiras de atender ao princípio ALARA é através do ajuste dos valores de IM e IT a um índice baixo e, em seguida, modificar esse nível até obter uma imagem ou um modo de Doppler satisfatório. Para mais informações sobre IM e IT, consulte a Medical Ultrasound Safety, AIUM (uma cópia acompanha cada sistema) e a IEC 60601-2-37 Anexo “Guidance on the interpretation of TI and MI to be used to inform the operator.”

Exibição da saída

Documentos de orientação relacionados

Informações para Fabricantes Buscando Liberação Comercial de Sistemas de Diagnóstico por Ultrassom e Transdutores, FDA, 2008.

Segurança Médica de Ultrassom, Instituto Americano de Ultrassonografia em Medicina (AIUM), 2014. (uma cópia acompanha cada sistema.)

Padrão de Medição de Saída Acústica para Equipamentos de Diagnóstico por Ultrassom, NEMA UD2-2004.

IEC 60601-2-37: 2015, Requisitos particulares para desempenho essencial e segurança básica de equipamento de monitoramento e diagnóstico por ultrassom.

Aumento de temperatura da superfície do transdutor

A Tabela 10-4 e a Tabela 10-5 listam o aumento de temperatura medido na superfície dos transdutores utilizados no sistema de ultrassom em relação à temperatura ambiente (23 °C ± 3 °C). As temperaturas foram medidas segundo a IEC 60601-2-37, sendo os controles e configurações posicionados para fornecer temperaturas máximas.

Medida da saída acústica

Desde o início da utilização do ultrassom para diagnóstico, têm sido estudados, por inúmeras instituições médicas e científicas, os possíveis efeitos biológicos (bioefeitos) em humanos decorrentes da exposição ao ultrassom. Em outubro de 1987, o American Institute of Ultrasound in Medicine (AIUM) ratificou um relatório de seu Comitê de Bioefeitos (Bioeffects Considerations for the Safety of Diagnostic Ultrasound, J Ultrasound Med., setembro de 1988: Vol. 7, Suplemento Nº 9). No relatório, eventualmente referido como o Relatório

A saída acústica desse sistema de ultrassom foi medida e calculada em conformidade com a norma “Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment” (NEMA UD2-2004) e a IEC 60601-2-37. 2015, Requisitos particulares para desempenho essencial e segurança básica de equipamento de monitoramento e diagnóstico por ultrassom.

Tabelas de saída acústica

O formato das tabelas de saída acústica foi atualizado.

- Modelo do transdutor: C8x Modo de operação: 2D ... 507
- Modelo do transdutor: C8x Modo de operação: M mode ... 508
- Modelo do transdutor: C8x Modo de operação: Cores/CPD .. 509
- Modelo do transdutor: C8x Modo de operação: Doppler DP .. 510
- Modelo do transdutor: C11x Modo de operação: Doppler DP ... 511
- Modelo do transdutor: C35x Modo de operação: 2D .. 512
- Modelo do transdutor: C35x Modo de operação: Doppler DP .. 513
- Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: 2D ... 514
- Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: M mode 515
- Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: Cores/CPD 516
- Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: Doppler DP 517
- Modelo do transdutor: HFL38xi Modo de operação: 2D ... 518
- Modelo do transdutor: HFL38xi Modo de operação: M mode ... 519
- Modelo do transdutor: HFL38xi Modo de operação: Cores/CPD .. 520
- Modelo do transdutor: HFL38xi Modo de operação: Doppler DP .. 521
- Modelo do transdutor: HFL50x Modo de operação: 2D ... 522
- Modelo do transdutor: HFL50x Modo de operação: M mode .. 523
- Modelo do transdutor: HFL50x Modo de operação: Cores ... 524
- Modelo do transdutor: HFL50x Modo de operação: Doppler DP ... 525
- Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: 2D .. 526
- Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: M mode 527
- Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: Cores/CPD 528
- Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: Doppler DP 529
- Modelo do transdutor: HSL25x Modo de operação: 2D ... 530
- Modelo do transdutor: HSL25x Modo de operação: Cores/CPD .. 531
- Modelo do transdutor: HSL25x Modo de operação: Doppler DP .. 532
- Modelo do transdutor: ICTx Modo de operação: Doppler DP ... 533
- Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: 2D ... 534
- Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: M mode 535
- Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: Cores/CPD 536
- Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: Doppler DP 537
- Modelo do transdutor: L25x Modo de operação: 2D ... 538
- Modelo do transdutor: L25x Modo de operação: Cores/CPD .. 539
<table>
<thead>
<tr>
<th>Modelo do transdutor</th>
<th>Modo de operação</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>L25x</td>
<td>Doppler DP</td>
<td>540</td>
</tr>
<tr>
<td>L38xi</td>
<td>2D</td>
<td>541</td>
</tr>
<tr>
<td>L38xi</td>
<td>M mode</td>
<td>542</td>
</tr>
<tr>
<td>L38xi</td>
<td>Cores/CPD</td>
<td>543</td>
</tr>
<tr>
<td>L38xi</td>
<td>Doppler DP</td>
<td>544</td>
</tr>
<tr>
<td>P10x</td>
<td>Cores</td>
<td>545</td>
</tr>
<tr>
<td>P10x</td>
<td>Doppler CD</td>
<td>546</td>
</tr>
<tr>
<td>P10x</td>
<td>Doppler DP</td>
<td>547</td>
</tr>
<tr>
<td>rC60xi</td>
<td>2D</td>
<td>548</td>
</tr>
<tr>
<td>rC60xi</td>
<td>M mode</td>
<td>549</td>
</tr>
<tr>
<td>rC60xi</td>
<td>Cores/CPD</td>
<td>550</td>
</tr>
<tr>
<td>rC60xi (uso orbital)</td>
<td>Doppler DP</td>
<td>551</td>
</tr>
<tr>
<td>rP19x</td>
<td>2D</td>
<td>552</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>M mode</td>
<td>553</td>
</tr>
<tr>
<td>rP19x (uso orbital)</td>
<td>Cores/CPD</td>
<td>554</td>
</tr>
<tr>
<td>rP19x</td>
<td>Doppler DP</td>
<td>555</td>
</tr>
<tr>
<td>rP19x</td>
<td>M mode</td>
<td>556</td>
</tr>
<tr>
<td>rP19x</td>
<td>Cores/CPD</td>
<td>557</td>
</tr>
<tr>
<td>rP19x</td>
<td>Doppler DP</td>
<td>558</td>
</tr>
<tr>
<td>P19x</td>
<td>Doppler CD</td>
<td>559</td>
</tr>
<tr>
<td>P19x</td>
<td>Doppler DP</td>
<td>560</td>
</tr>
<tr>
<td>P19x</td>
<td>Cores/CPD</td>
<td>561</td>
</tr>
<tr>
<td>P19x</td>
<td>Doppler DP</td>
<td>562</td>
</tr>
<tr>
<td>TEExi</td>
<td>Doppler CD</td>
<td>563</td>
</tr>
<tr>
<td>TEExi</td>
<td>Doppler DP</td>
<td>564</td>
</tr>
<tr>
<td>TEExi</td>
<td>Cores/CPD</td>
<td>565</td>
</tr>
<tr>
<td>TEExi</td>
<td>Doppler DP</td>
<td>566</td>
</tr>
</tbody>
</table>
Tabela 10: Modelo do transdutor: C8x Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii},a}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,53</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>9,524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>18,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{p_{ii},a}$ (W/cm²)</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pi_{ii},a}$ ou $z_{s_{ii},a}$ (mW/cm²)</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
<td>3,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>2,5–3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Desligado</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é
relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 11: Modelo do transdutor: C8x Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a}$ α z_{MI} (MPa)</td>
<td>2,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ α $z_{pii,a}$ (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a}$ α $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} α z_{pii} ou z_{sii} (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r α z_{pii} (MPa)</td>
<td>3,57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações			
Tipo de exame	Pro		
Otimização	Pen		
Profundidade (cm)	4,2		

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 12: Modelo do transdutor: C8x Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{3} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{II},\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2,548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p_{II},\alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{p_{II},\alpha}$ ou $z_{s_{II},\alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{II}}$ ou $z_{s_{II}}$ (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{II}}$ (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td>Tipo de exame</td>
<td>Pro</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>Pen /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimização 2D/Profundidade (cm)</td>
<td>1,5–1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimização de cores/PRF (Hz)</td>
<td>Alta / Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Estreita / Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 13: Modelo do transdutor: C8x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,5</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} \times z_{MI}$ (MPa)</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>23,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>23,1</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>#</td>
<td>4,80</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} \times z_{pii,\alpha}$ (W/cm2)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta,\alpha}} \times z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm2)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta}} \times z_{p_{ii}}$ ou z_{sii} (mW/cm2)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r} \times z_{p_{ii}}$ (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Pro</td>
<td></td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 4</td>
<td></td>
<td>Zona 4</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.008</td>
<td></td>
<td>1.008</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 14: Modelo do transdutor: C11x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Valor do índice máximo

<table>
<thead>
<tr>
<th>Valor dos componentes do índice</th>
<th>#</th>
<th>#</th>
<th>0,5</th>
<th>1,5</th>
</tr>
</thead>
</table>

Parâmetros acústicos

<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{r,a} a z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>24,6</td>
<td>21,7</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>24,6</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td>1,7</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{pii,a} (cm)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{wavf} (MHz)</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Outras informações

<table>
<thead>
<tr>
<th>Outras informações</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{pa,a} a z_{pii,a} (W/cm²)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta,a} a z_{pii,a} ou z_{sii,a} (mW/cm²)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Controles operacionais

<table>
<thead>
<tr>
<th>Controles operacionais</th>
<th>Nrv</th>
<th>Nrv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de exame</td>
<td>Zona 1</td>
<td>Zona 0</td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>10.417</td>
<td>6.250</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 15: Modelo do transdutor: C35x Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a} \text{ a } z_{MI}$ (MPa)</td>
<td>1,8</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outras informações</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppr (Hz)</td>
<td>1,021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7,98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a} \text{ a } z_{pii,a}$ (W/cm²)</td>
<td>250</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,a} \text{ a } z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>8,6</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>16,5</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controles operacionais</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de exame</td>
<td>Msk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>8,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>N/D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 16: Modelo do transdutor: C35x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,6</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>71,1</td>
<td>47,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Espinha</td>
<td>Espinha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 5</td>
<td>Zona 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>6.250</td>
<td>15.625</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.

Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 17: Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007 (b)</td>
<td></td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>0,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>0,77</td>
<td>0,77</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,21</td>
<td>0,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,59</td>
<td>6,75</td>
<td>6,75 #</td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>11,339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>19,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>11,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>4,9</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Ligado</td>
<td>Ligado</td>
<td>Ligado</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 18: Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{MI}$ (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,087</td>
<td>0,064</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} a z_{pii,\alpha}$ ou $I_{sii,\alpha}$ (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou I_{sii} (mW/cm²)</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pi} (MPa)</td>
<td>0,55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.

— Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 19: Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{r,\alpha}$ a z_{MI} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,39</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>1,11</td>
<td>1,11</td>
</tr>
<tr>
<td>P_{1X1} (mW)</td>
<td></td>
<td>0,75</td>
<td>0,75</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{i\pi},\alpha}$ (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>4,537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{p_{i\pi},\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{p_{i\pi},\alpha}$ ou $z_{s_{ii},\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>l_{spta} a $z_{p_{i\pi}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>p_r a $z_{p_{i\pi}}$ (MPa)</td>
<td></td>
<td></td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Otimização 2D/Profundidade (cm)</td>
<td>Pen/1,5</td>
<td>Pen/4,9</td>
<td>Pen/4,9</td>
<td></td>
</tr>
<tr>
<td>Otimização de cores/PRF (Hz)</td>
<td>Alta/7,813</td>
<td>Alta/6,944</td>
<td>Alta/6,944</td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Parte inferior/Pequeno</td>
<td>Pad./Estreito</td>
<td>Pad./Estreito</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Tabela 20: Modelo do transdutor: HFL38xi (Uso oftálmico) Modo de operação: Doppler DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rótulo do índice</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
</tr>
<tr>
<td>P (mW)</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
</tr>
<tr>
<td>n_{pps}</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
</tr>
<tr>
<td>$I_{pta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
</tr>
<tr>
<td>I_{pta} a z_{pii} ou z_{sii} (mW/cm²)</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
</tr>
<tr>
<td>Outras informações</td>
</tr>
<tr>
<td>Tipo de exame</td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
</tr>
<tr>
<td>PRF (Hz)</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é
relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 21: Modelo do transdutor: HFL38xi Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a} a z_{MI}$ (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pill,a}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a $z_{pill,a}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pill,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pill} ou z_{sii} (mW/cm²)</td>
<td>19,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pill} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações
<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ (Hz)</td>
<td>2.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{r} (Hz)</td>
<td>11,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pill,a}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pill,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pill} ou z_{sii} (mW/cm²)</td>
<td>19,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pill} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações
Tipo de exame	Ven
Otimização	Res
Profundidade (cm)	3,3
MB	N/D
Visão da agulha	Ligado

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 22: Modelo do transdutor: HFL38xi Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r, a} a z_{MI}$ (MPa)</td>
<td>3,14</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>pr_r (Hz)</td>
<td>1.600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, a} a z_{pii, a}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, a} a z_{pii, a}$ ou $z_{sii, a}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 23: Modelo do transdutor: HFL38xi Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2,223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a}$ a $z_{pii,a}$ ou $z_{ssi,a}$ (mW/cm²)</td>
<td>27,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} ou z_{ssi} (mW/cm²)</td>
<td>40,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td>Tipo de exame</td>
<td>SmP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimização 2D/Profundidade (cm)</td>
<td>Res/3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimização de cores/PRF (Hz)</td>
<td>Baixa/401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Pad./Pad.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 24: Modelo do transdutor: HFL38xi Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>47,7</td>
<td>47,7</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>47,7</td>
<td>47,7</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1,008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>102,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>210,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Nrv</td>
<td>Art</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 3</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.008</td>
<td>3.125</td>
<td>3.125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 25: Modelo do transdutor: HFL50x Modo de operação: 2D

<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rótulo do índice</td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_S (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_B (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2,733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações

Tipo de exame	Qualquer
Otimização	Qualquer
Profundidade (cm)	3,3
Mbe	Ligado

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1.600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 27: Modelo do transdutor: HFL50x Modo de operação: Cores

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>8.233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm2)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{si,\alpha}$ (mW/cm2)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{si} (mW/cm2)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização/Profundidade (cm)</td>
<td>Baixa/3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>1,1</td>
<td>1,9</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>1,1</td>
<td>0,7</td>
<td>1,1</td>
</tr>
<tr>
<td>(p_{r,a} \text{ a } z_{MI}) (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>42,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>42,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>(z_{pii,a}) (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>5,34</td>
<td>5,34</td>
<td>5,34</td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td>1,008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,a} \text{ a } z_{pii,a}) (W/cm²)</td>
<td></td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spa,a} \text{ a } z_{pii,a} \text{ ou } z_{sii,a}) (mW/cm²)</td>
<td></td>
<td>399,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spa} \text{ a } z_{pii} \text{ ou } z_{sii}) (mW/cm²)</td>
<td></td>
<td>599,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r \text{ a } z_{pii}) (MPa)</td>
<td></td>
<td>3,23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações

<table>
<thead>
<tr>
<th>倘</th>
<th>Qualquer</th>
<th>Qualquer</th>
<th>Qualquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{spa} \text{ ou } z_{sii}) (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spa,a} \text{ a } z_{pii,a}) (W/cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles operacionais

<table>
<thead>
<tr>
<th>Tamanho do volume da amostra (mm)</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 3</td>
<td>Zona 7</td>
<td>Zona 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1,008</td>
<td>1.563–3.125</td>
<td>1.563–3.125</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação: o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 29: Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a} \text{ a } z_{MI}$ (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,70</td>
<td>0,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_MI (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a} \text{ a } z_{pii,a}$ (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a} \text{ a } z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} \text{ a } z_{pii}$ ou z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Ligado</td>
<td>Ligado</td>
<td>Ligado</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é
relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 30: Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
</tr>
<tr>
<td>$p_{r, a}$ a z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>0,45</td>
<td>0,45</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,45</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, a}$ a $z_{pii, a}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, a}$ a $z_{pii, a}$ ou $z_{sii, a}$ (mW/cm²)</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 31: Modelo do transdutor: HSL25x (Uso oftálmico) Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,a} z_{MI}$ (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>z_a (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3,096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a} z_{pii,a}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a} z_{pii,a}$ ou $I_{sii,a}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou I_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a} z_{pii}$ (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Otimização 2D/Profundidade (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
<td></td>
</tr>
<tr>
<td>Otimização de cores/PRF (Hz)</td>
<td>Baixa/401</td>
<td>Méd/4,167</td>
<td>Méd/4,167</td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Pad./Pad.</td>
<td>Parte superior/ Curto-amplo</td>
<td>Parte superior/ Curto-amplo</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0.18</td>
<td>0.12</td>
<td>0.21</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>$p_{r,a} a z_{MI}$ (MPa)</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6.03</td>
<td>6.03</td>
<td>6.03</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1.953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Pa,a} a z_{pii,a}$ (W/cm²)</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SpTa,a} a z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SpTa} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>44.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.953</td>
<td>5.208</td>
<td>5.208</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 33: Modelo do transdutor: HSL25x Modo de operação: 2D

<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ a $z_{M\iota}$ (MPa)</td>
<td>2,87</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{M\iota}$ (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$z_{p\iota,\alpha}$ (cm)</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1,061</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,0</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{p\alpha,\iota}$ a $z_{p\iota,\alpha}$ (W/cm²)</td>
<td>478</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{p\iota,\alpha}$ ou $z_{s\iota,\alpha}$ (mW/cm²)</td>
<td>12,2</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} a $z_{p\iota}$ ou $z_{s\iota}$ (mW/cm²)</td>
<td>16,4</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a $z_{p\iota}$ (MPa)</td>
<td>3,39</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outras informações</th>
<th>Na superfície</th>
<th>Abaixo da superfície</th>
<th>Na superfície</th>
<th>Abaixo da superfície</th>
<th>Na superfície</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de exame</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimização</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,9–2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Ligado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 34: Modelo do transdutor: HSL25x Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>3,079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ops}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>47,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>63,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parâmetros acústicos

- **Outras informações**
 - $I_{pa,\alpha}$ a $z_{pii,\alpha}$
 - $I_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$
 - I_{spta} a z_{pii} ou z_{sii}
 - p_{r} a z_{pii}

Controles operacionais

- **Tipo de exame**: Sup
- **Modo**: CVD
- **Otimização 2D/Profundidade (cm)**: Pen/3,1
- **Otimização de cores/PRF (Hz)**: Baixa/401
- **Posição/Tamanho da caixa de cores**: Pad./Pad.

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 35: Modelo do transdutor: HSL25x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,8</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>28,1</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>28,1</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td></td>
<td></td>
<td>Nrv</td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td></td>
<td></td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td></td>
<td>1.953</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 36: Modelo do transdutor: ICTx Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
</tr>
<tr>
<td>z_S (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_B (cm)</td>
<td>#</td>
<td>#</td>
<td>1,60</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{p_{II,\alpha}}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>4,36</td>
</tr>
<tr>
<td>Outras informações</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{p_{II,\alpha}}$ a $z_{p_{II,\alpha}}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{p_{II,\alpha}}$ ou $z_{s_{II,\alpha}}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} a $z_{p_{II}}$ ou $z_{s_{II}}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r a $z_{p_{II}}$ (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Qualquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td></td>
<td>Qualquer</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.) — Os dados não se aplicam a este transdutor/modo.
Tabela 37: Modelo do transdutor: L25x (Uso oftálmico)
Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii},\alpha}$ (cm)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p_{a,\alpha}}$ a $z_{p_{ii},\alpha}$ (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{s_{pta,\alpha}}$ a $z_{p_{ii},\alpha}$ ou $z_{s_{ii},\alpha}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{s_{pta}}$ a $z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,58</td>
</tr>
</tbody>
</table>

Controles operacionais

<table>
<thead>
<tr>
<th></th>
<th>Oph</th>
<th>Oph</th>
<th>Oph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Optimização</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
</tr>
<tr>
<td>MB</td>
<td>Ligado</td>
<td>Ligado</td>
<td>Ligado</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 38: Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r, a} \times z_{M1}$ (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{M1} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td></td>
</tr>
<tr>
<td>$p_{r, a}$</td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{r}</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, a} \times z_{pii, a}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, a} \times z_{pii, a}$ ou $z_{sii, a}$ (mW/cm²)</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 39: Modelo do transdutor: L25x (Uso oftálmico) Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r, \alpha}$ a z_{MI} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>2,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_6 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppr (Hz)</td>
<td>3,096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ a $z_{pii, \alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha}$ a $z_{pii, \alpha}$ ou $I_{sii, \alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou I_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controles operacionais

Tipo de exame	Oph	Oph	Oph
Modo	CVD	CVD	CVD
Otimização 2D/Profundidade (cm)	Pen/1,9	Pen/5,1	Pen/5,1
Otimização de cores/PRF (Hz)	Baixa/401	Méd/4.167	Méd/4.167
Posição/Tamanho da caixa de cores	Pad./Pad.	Parte superior/Curto-amplo	Parte superior/Curto-amplo

Notas:

(a) Esse índice não é exigido para esse modo de operação: o valor é <1.

(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.

Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)

— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros acústicos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>0,44</td>
</tr>
<tr>
<td>P (mW)</td>
<td>4,0</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>4,0</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>0,9</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>0,80</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
</tr>
<tr>
<td>$z_{p_{ii,\alpha}}$ (cm)</td>
<td>1,2</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outras informações</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>1,953</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{p_{ii,\alpha}}$ (W/cm²)</td>
<td>7,4</td>
</tr>
<tr>
<td>$I_{pta,\alpha}$ a $z_{p_{ii,\alpha}}$ ou $z_{s_{ii,\alpha}}$ (mW/cm²)</td>
<td>18,4</td>
</tr>
<tr>
<td>I_{pta} a $z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>44,9</td>
</tr>
<tr>
<td>p_r a $z_{p_{ii}}$ (MPa)</td>
<td>0,56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controles operacionais</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de exame</td>
<td>Oph</td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1,953</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 41: Modelo do transdutor: L25x Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{MI}$ (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1.061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha} a z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parâmetros acústicos

- **Outras informações**
 - p_{rr} (Hz)
 - s_{rr} (Hz)
 - n_{pps}
 - $I_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)
 - $I_{spa,\alpha} a z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)
 - I_{spa} a z_{pii} ou z_{sii} (mW/cm²)
 - p_{r} a z_{pii} (MPa)

Controles operacionais

- Tipo de exame: Nrv/Msk/ Ven/Art
- Otimização: Qualquer
- Profundidade (cm): 1,9–2,2
- Mbe: Ligado

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 42: Modelo do transdutor: L25x Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha} a z_{MI}$ (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_5 (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_0 (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>5,261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ops}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{piii,\alpha}$ (W/cm2)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha} a z_{piii,\alpha}$ ou $z_{siii,\alpha}$ (mW/cm2)</td>
<td>81,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta} a z_{piii}$ ou z_{siii} (mW/cm2)</td>
<td>109,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_r a z_{piii}$ (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras informações
- Tipo de exame: Ven
- Modo: CVD
- Otimização 2D/Profundidade (cm): Pen/3,1
- Otimização de cores/PRF (Hz): Baixa/779
- Posição/Tamanho da caixa de cores: Pad./Pad.

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.

Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)

— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>32,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>32,1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spt,a}$ a $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spt,a}$ a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Vas/Ven/Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td></td>
<td></td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td></td>
<td></td>
<td>1,953</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 44: Modelo do transdutor: L38xi Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α a z_{MI} (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1,312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>10,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} a z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>10,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>N/D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visão da agulha</td>
<td>Ligado</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é
 relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 45: Modelo do transdutor: L38xi Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{Ml} (MPa)</td>
<td>3,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{Ml} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_{r} (Hz)</td>
<td>1.600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr_{r} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td>776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td>181,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>280,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Art</td>
<td></td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Gen</td>
<td></td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>4,7</td>
<td></td>
<td>7,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 46: Modelo do transdutor: L38xi Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>$p_{r, a}$ a z_{MI} (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>64,7</td>
<td>64,7</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1X1} (mW)</td>
<td>49,0</td>
<td>49,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>4,83</td>
<td>4,83</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2,190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, a}$ a $z_{pii, a}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, a}$ a $z_{pii, a}$ ou $z_{sii, a}$ (mW/cm²)</td>
<td>35,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>47,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Art</td>
<td>Ven</td>
<td>Ven</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Otimização 2D/Profundidade (cm)</td>
<td>Pen/2,0</td>
<td>Pen/3,1</td>
<td>Pen/3,1</td>
<td></td>
</tr>
<tr>
<td>Otimização de cores/PRF (Hz)</td>
<td>Baixa/393</td>
<td>Baixa/2,315</td>
<td>Baixa/2,315</td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Pad./Pad.</td>
<td>Parte inferior/ Curto-estreito</td>
<td>Parte inferior/ Curto-estreito</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação: o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 47: Modelo do transdutor: L38xi Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>2,6</td>
<td>1,8</td>
<td>2,6</td>
<td>3,7</td>
</tr>
<tr>
<td>$p_{r,\alpha} \times z_{MI}$ (MPa)</td>
<td>2,59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>114,5</td>
<td>114,5</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>114,5</td>
<td>114,5</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{i_{ii},\alpha}}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,06</td>
<td>4,78</td>
<td>4,78</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1,008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p_{a,\alpha} \times z_{p_{i_{ii},\alpha}}}$ (W/cm²)</td>
<td>32,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} \times z_{p_{i_{ii},\alpha}}$ ou $z_{s_{ii,\alpha}}$ (mW/cm²)</td>
<td>399,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta} \times z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>495,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
<td>2,86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td>Art</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 0</td>
<td>Zona 7</td>
<td>Zona 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1,008</td>
<td>10,417</td>
<td>10,417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 48: Modelo do transdutor: P10x Modo de operação: Cores

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1,1</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>42,2</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_p (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$z_{pi1,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>3,89</td>
</tr>
<tr>
<td>Outras informações</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pi1,\alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pi1,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} a z_{pi1} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pi1} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

Controles operacionais

Tipo de exame	Crd
Modo	CVD
Otimização 2D/Profundidade (cm)/Largura do setor	Pen/8,9/Estreito
Otimização de cores/PRF (Hz)	Baixa/2033
Posição/Tamanho da caixa de cores	Parte superior/Curto-amplo

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 49: Modelo do transdutor: P10x Modo de operação: Doppler CD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,8</td>
<td>1,7</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Parâmetros acústicos

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{r,\alpha}$</td>
<td>#</td>
<td>#</td>
<td>34,8</td>
<td>25,7</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>#</td>
<td>#</td>
<td>34,8</td>
<td></td>
</tr>
<tr>
<td>z_s</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf}</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>4,00</td>
</tr>
</tbody>
</table>

Outras informações

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr}</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr}</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} a z_{pii} ou z_{sii}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controle operacional

<table>
<thead>
<tr>
<th>Tipo de exame</th>
<th>Crd</th>
<th>Crd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 3</td>
<td>Zona 0</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 50: Modelo do transdutor: P10x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,90</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{\alpha_{II},\alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
<td>3,86</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1,562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>n_{ppp}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{II,\alpha}$ (W/cm²)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ a $z_{\alpha_{II},\alpha}$ ou $z_{II,\alpha}$ (mW/cm²)</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a $z_{\alpha_{II}}$ ou $z_{\alpha_{II}}$ (mW/cm²)</td>
<td>729,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{\alpha_{II}}$ (MPa)</td>
<td></td>
<td>2,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Crd</td>
<td>Crd</td>
<td>Abd</td>
<td>Crd</td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 2</td>
<td>Zona 6</td>
<td>Zona 1</td>
<td>Zona 0</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1,562</td>
<td>1,008</td>
<td>1,953</td>
<td>15,625</td>
</tr>
<tr>
<td>TDI</td>
<td>Desligado</td>
<td>Ligado</td>
<td>Desligado</td>
<td>Desligado</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.

Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)

— Os dados não se aplicam a este transdutor/modo.
Tabela 51: Modelo do transdutor: rC60xi Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>2,31</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3,584</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>28,0</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha} a z_{pii,\alpha}$ (W/cm²)</td>
<td>356</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spa,\alpha} a z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>24,1</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spa} a z_{pii}$ ou z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>3,29</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (Multifeixe)</td>
<td>Desligado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Ligado</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 52: Modelo do transdutor: rC60xi Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>(a)</td>
<td>1,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>2,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,66</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>144,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>328,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>3,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Abd</td>
<td></td>
<td>Msk</td>
<td></td>
</tr>
<tr>
<td>Otimização</td>
<td>Pen</td>
<td></td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>6,6</td>
<td></td>
<td>9,2</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Desligado</td>
<td></td>
<td>Desligado</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relorado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,a} a_{z_{MI}}$ (MPa)</td>
<td>2,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>185,8</td>
<td>185,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>107,5</td>
<td>107,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{II},a}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,22</td>
<td>2,21</td>
<td>2,21</td>
<td></td>
</tr>
<tr>
<td>pr_a (Hz)</td>
<td>1,265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>9,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a} a_{z_{p_{II},a}}$ (W/cm²)</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a} a_{z_{p_{II},a}}$ ou $z_{s_{II},a}$ (mW/cm²)</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,a} a_{z_{p_{II}}}$ ou $z_{s_{II}}$ (mW/cm²)</td>
<td>15,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a $z_{p_{II}}$ (MPa)</td>
<td>3,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>Otimização 2D/Profundidade (cm)/THI</td>
<td>Gen/11/Lig.</td>
<td>Gen/4,7/Deslig.</td>
<td>Gen/4,7/Deslig.</td>
<td></td>
</tr>
<tr>
<td>Otimização de cores/PRF (Hz)</td>
<td>Baixa/342</td>
<td>Alta/3.125</td>
<td>Alta/3.125</td>
<td></td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Parte inferior/Alto-estreito</td>
<td>Parte inferior/Alto-estreito</td>
<td>Parte inferior/Alto-estreito</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 54: Modelo do transdutor: rC60xi Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
</tr>
<tr>
<td>$p_{r, a}$ a z_{MI} (MPa)</td>
<td>1,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>67,5</td>
<td>74,2</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, a}$ (cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1,302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, a}$ a $z_{ipi,a}$ (W/cm²)</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spe, a}$ a $z_{ipi,a}$ ou $z_{sii, a}$ (mW/cm²)</td>
<td>399,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spe} a z_{ipi}$ ou z_{sii} (mW/cm²)</td>
<td>793,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 3</td>
<td>Zona 6</td>
<td>Zona 5</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.302</td>
<td>2.604</td>
<td>2.604</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 55: Modelo de transdutor: rP19x (uso orbital) Modo de operação: 2D

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>(p_{r,\alpha}) a (z_{MI}) (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>2,9</td>
<td>2,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
<td>1,90</td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>6,413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>15,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) a (z_{pii,\alpha}) (W/cm²)</td>
<td>4,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) a (z_{pii,\alpha}) ou (z_{sii,\alpha}) (mW/cm²)</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) a (z_{pii}) ou (z_{sii}) (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r}) a (z_{pii}) (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Otimização</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Desligado</td>
<td>Desligado</td>
<td>Desligado</td>
<td>Desligado</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 56: Modelo de transdutor: rP19x (uso orbital) Modo de operação: M mode

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,009</td>
<td>0,020</td>
<td>0,021</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>0,006</td>
<td>0,009</td>
<td>0,020</td>
</tr>
</tbody>
</table>

Parâmetros acústicos

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,34</td>
<td>1,34</td>
<td>1,34</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,67</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,06</td>
<td>1,83</td>
<td>1,83</td>
</tr>
</tbody>
</table>

Outras informações

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,a}$ a $z_{pii,a}$ (W/cm²)</td>
<td></td>
<td>4,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,a}$ a $z_{pii,a}$ ou $z_{sii,a}$ (mW/cm²)</td>
<td></td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td></td>
<td>2,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,31</td>
</tr>
</tbody>
</table>

Controles operacionais

<table>
<thead>
<tr>
<th>Tipo de exame</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otimização</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td></td>
<td>4,7</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 57: Modelo de transdutor: rP19x (uso orbital) Modo de operação: Cores/CPD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>15,47</td>
<td>15,47</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>9,50</td>
<td>9,50</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>[—]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>[—]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>5,443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Modo</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>Otimização 2D/Profundidade (cm)</td>
<td>Gen/4,7</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
</tr>
<tr>
<td>Otimização de cores/PRF (Hz)</td>
<td>Baixa/1,157</td>
<td>Baixa/3,125</td>
<td>Baixa/3,125</td>
<td>Baixa/3,125</td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Pad./Pad.</td>
<td>Parte superior/Curto-amplio</td>
<td>Parte superior/Curto-amplio</td>
<td>Parte superior/Curto-amplio</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 58: Modelo de transdutor: rP19x (uso orbital) Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>0,18</td>
<td>0,27</td>
<td>0,59</td>
<td>0,57</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td>0,19</td>
<td>0,27</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>37,4</td>
<td>35,3</td>
<td>37,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>17,5</td>
<td>17,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,5</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,5</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>2,23</td>
<td>2,23</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>1.953</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>2,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ a $z_{pii,\alpha}$ ou $z_{si,\alpha}$ (mW/cm²)</td>
<td>28,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{si} (mW/cm²)</td>
<td>69,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 6</td>
<td>Zona 7</td>
<td>Zona 5</td>
<td>Zona 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1.953</td>
<td>1.953</td>
<td>1.953</td>
<td>1.953</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação: o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>(p_{r,a}) a (z_{MI}) (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>152,6</td>
<td>152,6</td>
<td>177,8</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>96,1</td>
<td>96,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{s}) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{b}) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,a}) (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>1,99</td>
<td>2,08</td>
<td>2,08</td>
<td>1,53</td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>6,186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td>48,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,a}) a (z_{pii,a}) (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spa,a}) a (z_{pii,a}) ou (z_{sii,a}) (mW/cm²)</td>
<td>25,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spa}) a (z_{pii}) ou (z_{sii}) (mW/cm²)</td>
<td>38,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,a}) a (z_{pii}) (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Abd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Otimização</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td>Pen</td>
</tr>
<tr>
<td>Profundidade (cm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4,7</td>
</tr>
<tr>
<td>MB/THI</td>
<td>Desl/Desl</td>
<td>Desl/Lig</td>
<td>Desl/Lig</td>
<td>Desl/Lig</td>
</tr>
<tr>
<td>Largura do setor</td>
<td>N/D</td>
<td>Estreito</td>
<td>Estreito</td>
<td>N/D</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM Na superfície</th>
<th>Abaixo da superfície</th>
<th>ITO Na superfície</th>
<th>Abaixo da superfície</th>
<th>ITC Na superfície</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r, a z_Mi (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_Mi (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{pii, α} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td></td>
<td></td>
<td>1,81</td>
<td>1,77</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_pps</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{p_{a, α}} a z_{pii, α} (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta, α} a z_{pii, α} ou z_{sii, α} (mW/cm²)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha} \cdot a \cdot z_{MI}$ (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>128,0</td>
<td>128,0</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>115,6</td>
<td>115,6</td>
</tr>
<tr>
<td>z_{5} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>2,14</td>
<td>2,14</td>
<td>2,12</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha} \cdot z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha} \cdot z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td>Tipo de exame</td>
<td>Abd</td>
<td>TCD</td>
<td>TCD</td>
</tr>
<tr>
<td>Modo/THI</td>
<td>CVD/Deslig.</td>
<td>CVD/Deslig.</td>
<td>CVD/Deslig.</td>
<td>CVD/Ligado</td>
</tr>
<tr>
<td>Optimização 2D/Profundidade (cm)/Largura do setor</td>
<td>Gen/10/ N/D</td>
<td>Pen/7,5/ N/D</td>
<td>Pen/7,5/ N/D</td>
<td>Gen/16/ Estreito</td>
</tr>
<tr>
<td>Optimização de cores/PRF (Hz)</td>
<td>Baixa/300</td>
<td>Baixa/3.125</td>
<td>Baixa/3.125</td>
<td>Alta/5.208</td>
</tr>
<tr>
<td>Posição/Tamanho da caixa de cores</td>
<td>Pad./Pad.</td>
<td>Pad./Estreito</td>
<td>Pad./Estreito</td>
<td>Pad./Pad.</td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 62: Modelo do transdutor: rP19x Modo de operação: Doppler CD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>1,2</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,a}$ a z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>125,4</td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>125,4</td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,a}$ a $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,a}$ a $z_{pii,\alpha}$ ou $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} a z_{pii} ou z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r a z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 0</td>
<td>Zona 0</td>
<td>Zona 0</td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação: o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 63: Modelo do transdutor: rP19x Modo de operação: Doppler DP

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>1,3</td>
<td>1,8</td>
<td>4,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>1,3</td>
<td>1,8</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>Pr,α a zMI (MPa)</td>
<td>1,94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>253,7</td>
<td>240,2</td>
<td>251,1</td>
<td></td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td>118,6</td>
<td>116,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z5 (cm)</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zB (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>zMI (cm)</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpiι,α (cm)</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td>2,14</td>
<td>2,23</td>
<td>2,23</td>
<td>2,10</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1,562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpa,α a zpiι,α (W/cm²)</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta,α a zpiι,α ou zsiι,α (mW/cm²)</td>
<td>374,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ispta a zpiι ou zsiι (mW/cm²)</td>
<td>594,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr a zpiι (MPa)</td>
<td>2,42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parâmetros acústicos

Outras informações

Controles operacionais

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relato para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Tabela 64: Modelo do transdutor: TEExi Modo de operação: Doppler CD

<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
<td>Na superfície</td>
<td>Abaixo da superfície</td>
</tr>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td></td>
<td>#</td>
<td>0,7</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r, a}) a (z_{MI}) (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td></td>
<td>34,4</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>34,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{pii, a}) (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td></td>
<td>4,00</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Outras informações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{pa, a}) (z_{pii, a}) (W/cm²)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{spta, a}) (z_{pii, a}) ou (z_{sii, a}) (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) (z_{pii}) ou (z_{sii}) (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>(p_r) a (z_{pii}) (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

Controles operacionais	
	Crd
Tipo de exame	
Volume da amostra	Zona 2

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
<table>
<thead>
<tr>
<th>Rótulo do índice</th>
<th>IM</th>
<th>ITM</th>
<th>ITO</th>
<th>ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor do índice máximo</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Valor dos componentes do índice</td>
<td>#</td>
<td>0,7</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>Parâmetros acústicos</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ a z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>35,8</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>35,8</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>#</td>
<td>2,57</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii},\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>3,81</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Outras informações</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ a $z_{p_{ii},\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp,\alpha}$ a $z_{p_{ii},\alpha}$ ou $z_{s_{ii},\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp,\alpha}$ a $z_{p_{ii}}$ ou $z_{s_{ii}}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} a $z_{p_{ii}}$ (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controles operacionais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de exame</td>
<td>Crd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamanho do volume da amostra (mm)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posição do volume da amostra</td>
<td>Zona 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>2.604</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Esse índice não é exigido para esse modo de operação; o valor é <1.
(b) Este transdutor não é destinado ao uso transcraniano ou cefálico neonatal.
Não foram relatados dados sobre essa condição de operação uma vez que o valor do índice máximo global não é relatado para o motivo apresentado. (Linha de referência do valor do índice máximo global.)
— Os dados não se aplicam a este transdutor/modo.
Termos usados nas tabelas de saída acústica

Tabela 66: Termos usados nas tabelas de saída acústica

<table>
<thead>
<tr>
<th>Termo</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Coeficiente de atenuação usado para descarga igual a 0,3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Frequência acústica de trabalho.</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$</td>
<td>Intensidade de pulso média atenuada.</td>
</tr>
<tr>
<td>I_{spta}</td>
<td>Intensidade temporal média do pico espacial.</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$</td>
<td>Intensidade temporal média atenuada do pico espacial.</td>
</tr>
<tr>
<td>IM</td>
<td>Índice mecânico.</td>
</tr>
<tr>
<td>Fig</td>
<td>Potência de saída.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Potência de saída de quadrado limitado.</td>
</tr>
<tr>
<td>$p_{r,\alpha}$</td>
<td>Pressão acústica rarefacional de pico atenuada.</td>
</tr>
<tr>
<td>p_r</td>
<td>Pressão acústica rarefacional de pico.</td>
</tr>
<tr>
<td>pii</td>
<td>Integral da intensidade do pulso.</td>
</tr>
<tr>
<td>pii,α</td>
<td>Integral da intensidade do pulso atenuado.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Número de pulsos por linha de varredura de ultrassom.</td>
</tr>
<tr>
<td>prr</td>
<td>Taxe de repetição do pulso.</td>
</tr>
<tr>
<td>srr</td>
<td>Taxe de repetição da varredura.</td>
</tr>
<tr>
<td>IT</td>
<td>Índice térmico.</td>
</tr>
<tr>
<td>ITO</td>
<td>Índice térmico ósseo.</td>
</tr>
<tr>
<td>ITC</td>
<td>Índice térmico do osso craniano.</td>
</tr>
<tr>
<td>ITM</td>
<td>Índice térmico de tecidos moles.</td>
</tr>
<tr>
<td>z_b</td>
<td>Profundidade para ITO.</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>Profundidade para o índice mecânico.</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Profundidade para o integral da intensidade do pulso.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Profundidade para o integral da intensidade do pulso atenuado.</td>
</tr>
</tbody>
</table>
O termo IMT foi removido da lista de abreviações do manual do usuário do SonoSite Edge II; a revisão será feita na próxima atualização.

Tabela 66: Termos usados nas tabelas de saída acústica

<table>
<thead>
<tr>
<th>Termo</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{Sii}</td>
<td>Profundidade para o somatório de pico dos integrais da intensidade do pulso.</td>
</tr>
<tr>
<td>$Z_{\text{Sii,}\alpha}$</td>
<td>Profundidade para o somatório de pico dos integrais da intensidade do pulso atenuada.</td>
</tr>
<tr>
<td>Z_5</td>
<td>Profundidade para ITM.</td>
</tr>
</tbody>
</table>

Glossário (SonoSite Edge II)

O termo IMT foi removido da lista de abreviações do manual do usuário do SonoSite Edge II; a revisão será feita na próxima atualização.
Errata bij gebruikershandleiding SonoSite Edge II en SonoSite SII

Inleiding .. 570
 Conventies in het document .. 570
 Help ... 570
Help (SonoSite Edge II) .. 571
 Aan de slag .. 571
 Beoogd gebruik ... 571
Systeem instellen ... 571
 Instellingen voor connectiviteit (SonoSite SII) ... 571
 Connectiviteit instellen (SonoSite Edge II) .. 571
 Instellingen voor netwerkstatus .. 572
Beeldvorming .. 572
 Beschikbare beeldvormingsmodi en onderzoeken per transducer (SonoSite SII) .. 572
Metingen en berekeningen (SonoSite SII) ... 572
 Algemene berekeningen ... 572
Achtergrondinformatie metingen (SonoSite SII) .. 573
 Meetnauwkeurigheid ... 574
 Publicaties en terminologie voor metingen .. 574
Reinigen en desinfecteren .. 575
Veiligheid ... 575
 Klinische veiligheid .. 575
 Elektromagnetische compatibiliteit .. 576
 Draadloze overdracht .. 578
 Draadloze USB-dongle (Panda) .. 578
 Draadloze beveiligingsmodule (Laird) .. 579
 Symbolen op labels .. 591
 Specificaties .. 600
 Ondersteunde transducers (SonoSite SII) .. 600
 Normen .. 601
 Normen voor elektromechanische veiligheid .. 601
Akoestisch vermogen ... 602
 ALARA-principe ... 602
 ALARA-principe toepassen .. 602
 Directe bedieningselementen ... 603
 Vermogensweergave ... 603
 Gerelateerde begeleidende documenten ... 603
 Akoestisch vermogen meten .. 603
 Terminologie in de tabellen met akoestisch vermogen ... 662
Woordenlijst (SonoSite Edge II) ... 663
Inleiding

Conventies in het document

Het document volgt deze conventies:

- Een **WAARSCHUWING** beschrijft de voorzorgsmaatregelen die noodzakelijk zijn om letsel of overlijden te voorkomen.
- Een **Let op** beschrijft voorzorgsmaatregelen die noodzakelijk zijn om de producten te beschermen.
- Een **Opmerking** geeft aanvullende informatie.
- Stappen die van een nummer en letter zijn voorzien, moeten in een specifieke volgorde worden uitgevoerd.
- Lijsten met opsommingstekens geven informatie in lijstvorm weer, maar bevatten geen volgorde.
- Procedures bestaande uit één stap beginnen met ◆.

Raadpleeg ‘Symbolen op labels’ in de gebruikershandleiding voor een beschrijving van de labelsymbolen die op het product staan.

Help

Neem voor technische ondersteuning als volgt contact op met FUJIFILM SonoSite:

Telefoonnummer

(USA of Canada) +1-877-657-8118

(buiten de USA of Canada) +1-425-951-1330 of neem contact op met de plaatselijke vertegenwoordiger

Fax +1-425-951-6700

E-mail ffss-service@fujifilm.com

Website www.sonosite.com

Europees servicecentrum

Hoofdtelefoonnummer: +31 20 751 2020
Engelstalige ondersteuning: +44 14 6234 1151
Franstalige ondersteuning: +33 1 8288 0702
Duitstalige ondersteuning: +49 69 8088 4030
Italiaantalige ondersteuning: +39 02 9475 3655
Spaanstalige ondersteuning: +34 91 123 8451

Servicecentrum voor Azië +65 6380-5581

Gedrukt in de VS.
Help (SonoSite Edge II)

Het volgende is in de gebruikershandleiding van het SonoSite Edge II-systeem gecorrigeerd. De herziening wordt in de volgende update doorgevoerd.

E-mail ffss-service@fujifilm.com

Aan de slag

De volgende inhoud was niet of verkeerd opgenomen in de gebruikershandleidingen van de SonoSite Edge II en SonoSite SII-systemen. De herzieningen worden in de volgende update doorgevoerd.

Beoogd gebruik

Beeldvormingstoepassingen voor de prostaat

U kunt de prostaat en omliggende anatomische structuren controleren op de aan- of afwezigheid van pathologieën.

Oppervlakkige beeldvormingstoepassingen

U kunt de borst, schildklier, testikels, lymfklieren, hernia’s, musculoskeletale structuren, structuren van weke delen, ruggenwervel, ophthalmologische structuren en omliggende anatomische structuren controleren op de aan- of afwezigheid van pathologieën. U kunt het systeem gebruiken voor ultrasone begeleiding bij biopsie- en drainageprocedures, plaatsing van vasculaire lijnen en perifere zenuwblokkades.

Systeem instellen

Instellingen voor connectiviteit (SonoSite SII)

Alle verwijzingen naar de PDAS moeten in de gebruikershandleiding van het SonoSite SII-systeem in SiteLink worden gewijzigd. De herziening wordt in de volgende update doorgevoerd.

Connectiviteit instellen (SonoSite Edge II)

De volgende verwijzing is in de gebruikershandleiding van het SonoSite Edge II-systeem bijgewerkt. De herziening wordt in de volgende update doorgevoerd.

Draadloze verbinding inschakelen

❖ Raadpleeg Een netwerkverbinding instellen.
Instellingen voor netwerkstatus

Als op uw scherm Network Status (Netwerkstatus) een bericht met betrekking tot een mislukte verbinding met een draadloos apparaat wordt weergegeven, is uw netwerkwachtwoord wellicht verlopen. Zorg ervoor dat u over een bijgewerkt netwerkwachtwoord beschikt voordat u probeert uw draadloze apparaat te verbinden.

Beeldvorming

De C8x-transducer kan met een naaldgeleider worden gebruikt op zowel SonoSite Edge II- als SonoSite SII-systemen.

Beschikbare beeldvormingsmodi en onderzoeken per transducer (SonoSite SII)

De volgende voetteksten ontbraken in Tabel 4-5. Beeldvormingsmodi en onderzoeken beschikbaar per transducer van de gebruikershandleiding van het SonoSite SII-systeem. De herziening wordt in de volgende update doorgevoerd.

aDe afkortingen van de onderzoekstypen zijn als volgt: Abd = abdomen, Art = arterieel, Bre = borst, Crd = cardiaal, Gyn = gynaecologie, Msk = spieren en botten, Neo = neonataal, Nrv = zenuw, OB = verloskunde, Oph = oftalmologisch, Pro = prostaat, SmP = kleine lichaamsdelen, Spn = ruggenwervel, Sup = oppervlakkig, Ven = veneus.

bDe optimalisatie-instellingen voor 2D zijn Res, Gen en Pen.

cDe optimalisatie-instellingen voor CPD en Color zijn laag, gemiddeld en hoog (flowgevoeligheid) met een aantal PRF-instellingen voor Color, afhankelijk van de geselecteerde instelling.

Metingen en berekeningen (SonoSite SII)

Algemene berekeningen

Volumeberekening

WAARSCHUWINGEN

▶ Controleer of de patiëntinformatie en datum- en tijdsinstellingen kloppen om onjuiste berekeningen te voorkomen.

▶ Start een nieuw patiëntformulier voordat u een nieuw patiëntonderzoek start en berekeningen uitvoert om een verkeerde diagnose of nadelige gevolgen voor de resultaten van de patiënt te voorkomen. Door een nieuw patiëntformulier te starten, worden de gegevens van de voorgaande patiënt gewist. De gegevens van de voorgaande patiënt worden samengevoegd met die van de huidige patiënt als het formulier niet eerst wordt leeggemaakt.
De volumeberekening omvat drie 2D-afstandsmetingen: D1, D2 en D3. Nadat alle metingen zijn opgeslagen, wordt het resultaat op het scherm en in het patiëntrapport weergegeven.

De volumeberekening is beschikbaar in de volgende onderzoekstypen: abdomen, arterieel, borst, gynaecologisch, spieren en botten, zenuw, kleine lichaamsdelen, veneus en oppervlakkig.

Volume berekenen

Doe het volgende voor elk beeld dat u wilt meten:

1 Tik in een stilgezet 2D-beeld op **Calcs** (Berekeningen).

2 Doe het volgende voor elke meting die u moet uitvoeren:

 a Selecteer de naam van de meting in het berekeningsmenu onder **Volume**.
 Als **Volume** niet beschikbaar is in een gynaecologisch onderzoek, selecteert u **Gyn** (Gynaecologisch) en vervolgens **Volume**.
 b Gebruik de touchpad of het aanraakscherm om de positie van de passer aan te passen.
 c Tik op **Save Calc** (Berekening opslaan) om de berekening te bewaren.
 Een vinkje verschijnt naast de opgeslagen meting.

3 Tik op 📸 om een afbeelding van de voltooide berekening op te slaan.

4 Tik op **Back** (Terug) om de berekening af te sluiten.

Achtergrondinformatie metingen (SonoSite SII)

De volgende informatie was niet opgenomen in de gebruikershandleiding van het SonoSite SII-systeem. De herziening wordt in de volgende update doorgevoerd.
Meetnauwkeurigheid

Tabel 1: Nauwkeurigheid en bereik meting en berekening M Mode

<table>
<thead>
<tr>
<th>Nauwkeurigheid en bereik meting M Mode</th>
<th>Tolerantie systeem</th>
<th>Nauwkeurigheid bij</th>
<th>Testmethode</th>
<th>Bereik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afstand</td>
<td>< ± 2% plus 1% van volledige schaal<sup>a</sup></td>
<td>Verwerving</td>
<td>Fantoom<sup>b</sup></td>
<td>0 – 26 cm</td>
</tr>
<tr>
<td>Tijd</td>
<td>< ± 2% plus 1% van volledige schaal<sup>c</sup></td>
<td>Verwerving</td>
<td>Fantoom<sup>d</sup></td>
<td>0,01 – 10 sec</td>
</tr>
<tr>
<td>Hartfrequentie</td>
<td>< ± 2% plus (Volledige schaal<sup>c</sup> * Hartfrequentie/100)%</td>
<td>Verwerving</td>
<td>Fantoom<sup>d</sup></td>
<td>5 – 923 bpm</td>
</tr>
</tbody>
</table>

^aVolledige schaal voor afstand geeft de maximale diepte van het beeld aan.

^bEr is een RMI 413a-modelfantoom gebruikt met een verzwakking van 0,7 dB/cm MHz.

^cVolledige schaal voor tijd geeft de totale tijd aan, weergegeven op het schuivende grafische beeld.

^dEr is speciale testapparatuur van FUJIFILM SonoSite gebruikt.

Publicaties en terminologie voor metingen

Algemene achtergrondinformatie

Heuphoek/d:D-verhouding

Percentage oppervlaktevermindering

\[
\text{% oppervlaktevermindering} = \left[1 - \frac{A2(\text{cm}^2)}{A1(\text{cm}^2)}\right] \times 100
\]

waarbij: A1 = oorspronkelijke oppervlakte van het vat in vierkante cm

A2 = verminderde oppervlakte van het vat in vierkante cm
Percentage diametervermindering

\[
\% \text{ diametervermindering} = [1 - \frac{D2(\text{cm})}{D1(\text{cm})}] \times 100
\]

waarbij:
\(D1 \) = oorspronkelijke diameter van het vat in cm
\(D2 \) = verminderde diameter van het vat in cm

Reinigen en desinfecteren

De volgende website is in de gebruikershandleidingen van de SonoSite Edge II en de SonoSite SII gecorrigeerd. De herziening wordt in de volgende update doorgevoerd.

www.sonosite.com/products/transducers

De volgende voetnoot is bijgewerkt in de tabellen voor reiniging en desinfectie.

Veiligheid

Klinische veiligheid

De volgende waarschuwing is bijgewerkt in de gebruikershandleidingen van de SonoSite Edge II en de SonoSite SII. De herziening wordt in de volgende update doorgevoerd.

WAARSCHUWING
FUJIFILM SonoSite raadt af hoogfrequente (HF) elektromedische apparatuur in de nabijheid van de systemen te gebruiken. FUJIFILM SonoSite-apparatuur is niet gevalideerd voor gebruik met elektromedische HF-apparatuur of procedures. Gebruik van elektrochirurgische HF-apparatuur in de nabijheid van de systemen kan leiden tot ongebruikelijk gedrag of uitschakeling van het systeem.

Gebruik de transducer niet met chirurgische HF-apparatuur om het risico op brandwonden te voorkomen. Brandwonden kunnen optreden bij een defect in de aansluiting van de chirurgische neutrale HF-elektrode.
Elektromagnetische compatibiliteit

Let op

Voor medische elektrische apparatuur zijn speciale voorzorgsmaatregelen wat betreft EMC vereist en deze apparatuur dient volgens deze instructies te worden geplaatst en bediend. Draagbare RF-communicatieapparatuur (inclusief randapparatuur zoals antennekabels en externe antennes) mag niet dichter dan 30 cm bij eender welk onderdeel van het ultrasone systeem worden gebruikt, met inbegrip van kabels gespecificeerd door FUJIFILM SonoSite. Draagbare en mobiele RF-communicatieapparatuur kan invloed hebben op het ultrasone systeem. Elektromagnetische interferentie (EMI) van andere apparatuur of interfererende bronnen kunnen de werking van het ultrasone systeem verstoren. Tekenen van verstoringen zijn onder andere verminderde beeldkwaliteit of vertekende beelden, onregelmatige waarden, niet-werkende apparatuur of ander onjuist functioneren. Als deze tekenen optreden, dient u de locatie te onderzoeken om de storingsbron te bepalen en de volgende acties te ondernemen om de bron(nen) te verwijderen.

1. Schakel apparatuur in de nabijheid uit en in om verstorende apparatuur te isoleren.
2. Plaats de verstorende apparatuur in een andere richting of verplaats deze.
3. Vergroot de afstand tussen verstorende apparatuur en uw ultrasone systeem.
4. Beperk het gebruik van frequenties nabij de frequenties van het ultrasone systeem.
5. Verwijder apparatuur die zeer gevoelig is voor EMI.
6. Verlaag het vermogen van interne bronnen binnen het beheer van uw instelling (zoals oproepsystemen).
7. Breng labels aan op apparatuur die gevoelig is voor EMI.
8. Leid klinisch personeel op om mogelijke EMI-gerelateerde problemen te herkennen.
9. Voorkom of reduceer EMI door middel van technische oplossingen (zoals afscherming).
10. Beperk het gebruik van persoonlijke communicatiemiddelen (mobiele telefoons, computers) in omgevingen met apparaten die gevoelig zijn voor EMI.
11. Deel relevante informatie over EMI met anderen, vooral bij het evalueren van aankopen van nieuwe apparatuur die EMI kan uitzenden.

Stapelen geen andere apparatuur op het ultrasone systeem en gebruik andere apparatuur niet nabij of naast het ultrasone systeem. Als u er niet aan ontkomt om andere apparatuur te stapelen of nabij het ultrasone systeem te gebruiken, dient u te controleren of het systeem normaal werkt.
De SonoSite Edge II en SII ultrasone systemen implementeren twee draadloze oplossingen.

- De draadloze USB-dongle (Panda) is een kleine draadloze adapter die kan worden aangesloten op de USB-poort aan de:
 - Rechterzijde van het Edge II ultrasone systeem.
 - Achterzijde boven van het SII ultrasone systeem.
- Draadloze beveiligingsmodule (Laird) is een module die is bevestigd op de:
 - Klep van het Edge II ultrasone systeem en vervolgens op het systeem kan worden aangesloten met een USB-kabel met een rechte hoek
 - Transducerhouderarm van het SII ultrasone systeem en vervolgens op het systeem kan worden aangesloten met een USB-kabel van 30 cm

Raadpleeg de onderstaande informatie voor de transmissiegegevens voor beide systemen.

Draadloze USB-dongle (Panda)

De draadloze USB-dongle maakt gebruik van de industriële, wetenschappelijke en medische (ISM) frequentiebanden van 2,412 tot 2,4835 GHz, afhankelijk van de voorschriften van uw land. De dongle gebruikt de volgende transmissiemethoden:

- IEEE 802.11b met Direct Sequence Spread Spectrum (DSSS) bij 19 dBm: piekfrequentie 54 Mbps, piekdoorvoer: 27 Mbps
- IEEE 802.11g met Orthogonal Frequency Division Multiplexing (OFDM) bij 16 dBm: piekfrequentie 54 Mbps, piekdoorvoer: 27 Mbps
- IEEE 802.11n met Orthogonal Frequency Division Multiplexing (OFDM) bij 15 dBm:
 - 1T1R. piekfrequentie: 150 Mbps, piekdoorvoer: 90 Mbps
 - 1T2R. piekfrequentie: 300 Mbps, piekdoorvoer: Rx 160 Mbps
 - 2T2R. piekfrequentie: 300 Mbps, piekdoorvoer: Rx 260 Mbps

Opmerking

De emissiekenmerken van de SonoSite Edge II en SII ultrasone systemen maken het systeem geschikt voor gebruik in industriële gebieden en ziekenhuizen (CISPR 11 klasse A). Als het systeem in een woonomgeving wordt gebruikt (waarvoor gewoonlijk CISPR 11 klasse B is vereist), biedt het ultrasone systeem mogelijk onvoldoende bescherming voor radiofrequentiecommunicatiendiensten. Het kan nodig zijn om beperkende maatregelen te treffen, zoals het systeem anders richten of verplaatsen.
Draadloze beveiligingsmodule (Laird)

De draadloze beveiligingsmodule maakt gebruik van de industriële, wetenschappelijke en medische (ISM) frequentiebanden van 1,400 tot 2,4835 GHz en 5,100 tot 5,800 GHz. De module gebruikt vier verschillende transmissiemethoden:

- IEEE 802.11a met Orthogonal Frequency Division Multiplexing (OFDM) bij 11 dBm ± 2 dBm bij 54 Mbps
- IEEE 802.11b met Direct Sequence Spread Spectrum (DSSS) bij 16 dBm ± 2,0 dBm bij 11 Mbps
- IEEE 802.11g met Orthogonal Frequency Division Multiplexing (OFDM) bij 13 dBm ± 2,0 dBm bij 54 Mbps
- IEEE 802.11n met Orthogonal Frequency Division Multiplexing (OFDM) bij 12 dBm ± 2,0 dBm (802.11gn) bij MCS7

Compatibele accessoires en randapparatuur (SonoSite Edge II)

U kunt deze FUJIFILM SonoSite-accessoires en randapparatuur van derden gebruiken met het SonoSite Edge II.

WAARSCHUWINGEN

- Gebruik van de accessoires met andere medische systemen dan het Edge ultrasone systeem kan leiden tot verhoogde emissies of verminderde immuniteit van het medische systeem.
- Het gebruik van accessoires die niet worden vermeld kan leiden tot verhoogde emissies of verminderde immuniteit van het ultrasone systeem.
- Het ultrasone systeem mag niet in een woonomgeving worden gebruikt of op het openbare elektriciteitsnetwerk worden aangesloten.

Tabel 2: Accessoires en randapparatuur die compatibel zijn met het Edge II ultrasone systeem

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Maximale kabellengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>C11x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>C35x-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>rC60xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>Beschrijving</td>
<td>Maximale kabellengte</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>HFL38xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HFL50x-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HSL25x-transducer</td>
<td>2,3 m</td>
</tr>
<tr>
<td>ICTx-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>L25x-transducer standaard/versterkt</td>
<td>2,3 m</td>
</tr>
<tr>
<td>L38xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>L52x-transducera</td>
<td>2,4 m</td>
</tr>
<tr>
<td>P10x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>rP19x-transducer standaard/versterkt</td>
<td>1,8 m</td>
</tr>
<tr>
<td>TEExi-transducer</td>
<td>2,2 m</td>
</tr>
<tr>
<td>Streepjescodescanner</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Accu voor PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Accupack</td>
<td>–</td>
</tr>
<tr>
<td>Accu PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Zwart-witprinter</td>
<td>–</td>
</tr>
<tr>
<td>Voedingskabel zwart-witprinter</td>
<td>1 m</td>
</tr>
<tr>
<td>Kleurenprinter</td>
<td>–</td>
</tr>
<tr>
<td>Voedingskabel kleurenprinter</td>
<td>1 m</td>
</tr>
<tr>
<td>Videokabel kleurenprinter</td>
<td>1,8 m</td>
</tr>
<tr>
<td>ECG-leads</td>
<td>0,6 m</td>
</tr>
<tr>
<td>ECG-module</td>
<td>1,8 m</td>
</tr>
<tr>
<td>ECG-slavekabel</td>
<td>2,4 m</td>
</tr>
<tr>
<td>SonoSite Edge II Dock</td>
<td>–</td>
</tr>
<tr>
<td>SonoSite Edge II-standaard</td>
<td>–</td>
</tr>
<tr>
<td>Voetschakelaar</td>
<td>3 m</td>
</tr>
</tbody>
</table>

Tabel 2: Accessoires en randapparatuur die compatibel zijn met het Edge II ultrasone systeem
Compatibele accessoires en randapparatuur (SonoSite SII)

U kunt deze FUJIFILM SonoSite-accessoires en randapparatuur van derden gebruiken met het SonoSite SII ultrasone systeem.

WAARSCHUWINGEN

- Gebruik van de accessoires met andere medische systemen dan het SonoSite SII ultrasone systeem kan leiden tot verhoogde emissies of verminderde immuniteit van het medische systeem.

- Het gebruik van accessoires die niet worden vermeld kan leiden tot verhoogde emissies of verminderde immuniteit van het ultrasone systeem.

Tabel 2: Accessoires en randapparatuur die compatibel zijn met het Edge II ultrasone systeem

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Maximale kabel lengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petite-muis</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Voedingskabel (systeem)</td>
<td>3 m</td>
</tr>
<tr>
<td>Voedingsbron met DC-kabel</td>
<td>2 m</td>
</tr>
<tr>
<td>Voedingsbron met AC-kabel</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>–</td>
</tr>
<tr>
<td>Drievoudige transducerconnector</td>
<td>–</td>
</tr>
<tr>
<td>Draadloze USB-adapter</td>
<td>–</td>
</tr>
</tbody>
</table>

De maximale kabel lengte voor transducers wordt gemeten tussen de trekontlastingen. De vermelde lengte omvat niet de lengtes van de kabel op de volgende locaties: onder de trekontlastingen, aan de binnenzijde van de transducerbehuizing en aan de binnenzijde van de transducerconnector.

De L52x-transducer is uitsluitend bestemd voor diergeneeskundig gebruik.
Tabel 3: Accessoires en randapparatuur die compatibel zijn met het SonoSite SII ultrasone systeem

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Maximale kabel lengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>C11x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>C35x-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>rC60xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HFL38xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HFL50x-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HSL25x-transducer</td>
<td>2,3 m</td>
</tr>
<tr>
<td>ICTx-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>L25x-transducer standaard/versterkt</td>
<td>2,3 m</td>
</tr>
<tr>
<td>L38xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>L52x-transducer</td>
<td>2,4 m</td>
</tr>
<tr>
<td>P10x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>rP19x-transducer standaard/versterkt</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Streepjescodescanner</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Accu voor PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Accupack</td>
<td>–</td>
</tr>
<tr>
<td>Accu PowerPack</td>
<td>–</td>
</tr>
<tr>
<td>Zwart-witprinter</td>
<td>–</td>
</tr>
<tr>
<td>Voedingskabel zwart-witprinter</td>
<td>1 m</td>
</tr>
<tr>
<td>Besturingskabel zwart-witprinter</td>
<td>1,8 m</td>
</tr>
<tr>
<td>Videokabel zwart-witprinter</td>
<td>1,9 m</td>
</tr>
<tr>
<td>Voetschakelaar</td>
<td>3 m</td>
</tr>
<tr>
<td>USB-verlengkabel voetschakelaar</td>
<td>2 m</td>
</tr>
<tr>
<td>SonoSite SII-standaard</td>
<td>–</td>
</tr>
</tbody>
</table>
Tabel 3: Accessoires en randapparatuur die compatibel zijn met het SonoSite SII ultrasone systeem (vervolg)

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Maximale kabellengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voedingskabel (systeem)</td>
<td>3 m</td>
</tr>
<tr>
<td>Voedingsbron met DC-kabel</td>
<td>2 m</td>
</tr>
<tr>
<td>Voedingsbron met AC-kabel</td>
<td>1 m</td>
</tr>
<tr>
<td>PowerPark</td>
<td>–</td>
</tr>
<tr>
<td>Draadloze USB-adapter</td>
<td>–</td>
</tr>
<tr>
<td>USB-stick</td>
<td>–</td>
</tr>
</tbody>
</table>

De maximale kabellengte voor transducers wordt gemeten tussen de trekontlastingen. De vermelde lengte omvat niet de lengtes van de kabel op de volgende locaties: onder de trekontlastingen, aan de binnenzijde van de transducerbehuizing en aan de binnenzijde van de transducerconnector.

Verklaring van de fabrikant

In de tabellen van dit gedeelte worden de beoogde gebruikersomgeving en EMC-nalevingsniveaus van het systeem vermeld. Voor maximale prestaties dient u ervoor te zorgen dat het systeem wordt gebruikt in de omgevingen die in deze tabel worden vermeld.

Het systeem is bedoeld voor gebruik in de hieronder gespecificeerde elektromagnetische omgeving.

<table>
<thead>
<tr>
<th>Emissietest</th>
<th>Naleving</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-emissies CISPR 11</td>
<td>Groep 1</td>
<td>De Edge II en SII ultrasone systemen gebruiken alleen RF-energie voor de interne werking. De RF-emissie is daarom zeer gering en het is onwaarschijnlijk dat deze storing veroorzaakt in elektronische apparatuur in de omgeving van de generator.</td>
</tr>
<tr>
<td>RF-emissies CISPR 11</td>
<td>Klasse A</td>
<td>De Edge II en SII ultrasone systemen zijn geschikt voor gebruik in alle gebouwen, met uitzondering van woningen en gebouwen die rechtstreeks zijn aangesloten op het openbare elektriciteitsnet.</td>
</tr>
<tr>
<td>Harmonische emissies IEC 61000-3-2</td>
<td>Klasse A</td>
<td></td>
</tr>
<tr>
<td>Spanningsfluctuaties en flikkeringen IEC 61000-3-3</td>
<td>Voldoet</td>
<td></td>
</tr>
</tbody>
</table>

Het systeem is bedoeld voor gebruik in de hieronder gespecificeerde elektromagnetische omgeving.

<table>
<thead>
<tr>
<th>Immuniteits-test</th>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrostatische ontlading (ESD) IEC 61000-4-2</td>
<td>± 2,0 KV, ± 4,0 KV, ± 6,0 KV contact ± 2,0 KV, ± 4,0 KV, ± 8,0 KV lucht</td>
<td>± 2,0 KV, ± 4,0 KV, ± 6,0 KV contact ± 2,0 KV, ± 4,0 KV, ± 8,0 KV lucht</td>
<td>De vloerbedekking moet bestaan uit hout, beton of keramische tegels. Als vloeren zijn bedekt met synthetisch materiaal, moet de relatieve vochtigheid ten minste 30% zijn.</td>
</tr>
<tr>
<td>Snelle elektrische overgangsstroom/burst IEC 61000-4-4</td>
<td>± 2 KV voor voedingslijnen ± 1 KV voor signaallijnen</td>
<td>± 2 KV voor voedingslijnen ± 1 KV voor signaallijnen</td>
<td>De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving.</td>
</tr>
</tbody>
</table>
Tabel 5: Verklaring van de fabrikant – Elektromagnetische immuniteit volgens IEC 60601-1-2:2007

<table>
<thead>
<tr>
<th>Immuneits-test</th>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroomstoot IEC 61000-4-5</td>
<td>± 1 KV lijn(en) naar lijn(en) ± 2KV lijn(en) naar aarde</td>
<td>± 1 KV lijn(en) naar lijn(en) ± 2KV lijn(en) naar aarde</td>
<td>De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving.</td>
</tr>
<tr>
<td>Spanningsval, korte onderbrekingen en spannings-fluctuaties in de stroomtoevoer-lijnen IEC 61000-4-11</td>
<td><5% U_T (>95% daling in U_T) gedurende 0,5 cyclus 40% U_T (60% daling in U_T) gedurende 5 cycli 70% U_T (30% daling in U_T) gedurende 25 cycli <5% U_T (>95% daling in U_T) gedurende 5 seconden</td>
<td><5% U_T (>95% daling in U_T) gedurende 0,5 cyclus 40% U_T (60% daling in U_T) gedurende 5 cycli 70% U_T (30% daling in U_T) gedurende 25 cycli <5% U_T (>95% daling in U_T) gedurende 5 seconden</td>
<td>De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving. Als de gebruiker van het FUJIFILM SonoSite ultrasonic systeem vereist dat het systeem ook gedurende stroomuitval continu blijft werken, wordt aanbevolen om het FUJIFILM SonoSite ultrasonic systeem te voeden vanaf een UPS of een accu.</td>
</tr>
<tr>
<td>Door netfrequentie opgewekt magnetisch veld IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Als vertekeningen van het beeld optreden, kan het noodzakelijk zijn om het FUJIFILM SonoSite ultrasonic systeem verder van de bronnen van door netfrequentie opgewekte magnetische velden te plaatsen of om magnetische afscherming te plaatsen. Het door netfrequentie opgewekte magnetische veld dient te worden gemeten op de beoogde installatielocatie om te garanderen dat dit veld laag genoeg is.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immuniteits-test</th>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geleide RF 150 kHz tot 80 MHz</td>
<td>3 Vrms</td>
<td>3 Vrms</td>
<td>Draagbare en mobiele radiofrequentiecommunicatieapparatuur (RF-communicatieapparatuur) mag niet dichter bij enig deel van het FUJIFILM SonoSite ultrasone systeem, inclusief de kabels, gebruikt worden dan de aanbevolen scheidingsafstand, berekend aan de hand van de formule die van toepassing is op de frequentie van de zender. Aanbevolen scheidingsafstand (d = 1,2 \sqrt{P})</td>
</tr>
<tr>
<td>Uitgezonden RF 80 MHz tot 2,5 GHz</td>
<td>3 V/m 80 MHz tot 2,5 GHz 3 V/m 80 MHz tot 2,5 GHz</td>
<td>3 V/m 80 MHz tot 2,5 GHz</td>
<td>(d = 1,2 \sqrt{P}) 80 MHz tot 800 MHz (d = 2,3 \sqrt{P}) 800 MHz tot 2,5 GHz Waarbij (P) het maximale nominale uitgangsvermogen van de zender in watt (10) is volgens de fabrikant van de zender en (d) de aanbevolen scheidingsafstand in meter (m) is. De door vaste RF-zenders uitgestraalde veldsterkte, zoals vastgesteld door elektromagnetische meting van de locatie(^a), moet lager zijn dan het nalevingsniveau in elk frequentiebereik(^b). Er kan storing optreden in de omgeving van apparatuur die van onderstaand symbool is voorzien: (IEC 60417 nr. 417-IEC-5140: ‘Bron van niet-ioniserende straling’)</td>
</tr>
</tbody>
</table>

\(^a\) | \(^b\)
U is de netspanning vóór toepassing van het testniveau. Bij 80 MHz en 800 MHz geldt het hogere frequentiebereik. Deze richtlijnen zijn mogelijk niet op alle situaties van toepassing. Elektromagnetische verstrooing wordt beïnvloed door absorptie door en weerkaatsing van structuren, voorwerpen en personen.

a. De veldsterkte van vaste zenders, zoals basisstations voor (mobiele/draadloze) radiotelefoons en landmобiele radio's, amateurradio's, AM- en FM-radio-uitzendingen en tv-uitzendingen, kan theoretisch niet nauwkeurig worden voorspeld. Voor het vaststellen van de elektromagnetische omgeving door vaste RF-zenders dient een electromagnetisch locatieonderzoek te worden overwogen. Wanneer op de gebruiksslocatie van het FUJIFILM SonoSite ultrasone systeem de gemeten veldsterkte het bovenvermelde van toepassing zijnde radiofrequente compliantieniveau overschrijdt, dient te worden gecontroleerd of het FUJIFILM SonoSite ultrasone systeem normaal werkt. Bij constatering van afwijkende prestaties kunnen aanvullende maatregelen nodig zijn zoals het verdraaien of verplaatsen van het FUJIFILM SonoSite ultrasone systeem.

b. Binnen het frequentiebereik van 150 kHz tot 80 MHz moet de veldsterkte minder zijn dan 3 V/m.

De vloerbedekking moet bestaan uit hout, beton of keramische tegels. Als vloeren zijn bedekt met synthetisch materiaal, moet de relatieve vochtigheid ten minste 30% zijn.

De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving.

De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving.
Tabel 6: Verklaring van de fabrikant – Elektromagnetische immuniteit volgens IEC 60601-1-2:2014

<table>
<thead>
<tr>
<th>Immunitetstest</th>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanningsval, korte onderbrekingen en spanningsfluctuaties in de stroomtoevoerlijnen IEC 61000-4-11</td>
<td>0% U₇ gedurende 0,5 cyclus 0% U₇ gedurende 5 cycli 70% U₇ (30% daling in U₇) voor 500 msec <5% U₇ (>95% daling in U₇) gedurende 5 seconden</td>
<td>0% U₇ gedurende 0,5 cyclus 0% U₇ gedurende 5 cycli 70% U₇ (30% daling in U₇) voor 500 msec <5% U₇ (>95% daling in U₇) gedurende 5 seconden</td>
<td>De kwaliteit van de netvoeding moet geschikt zijn voor een normale commerciële omgeving of ziekenhuisomgeving. Als de gebruiker van het FUJIFILM SonoSite ultrasone systeem vereist dat het systeem ook gedurende stroomuitval continu blijft werken, wordt aanbevolen om het FUJIFILM SonoSite ultrasone systeem te voeden vanaf een UPS of een accu.</td>
</tr>
<tr>
<td>Door netfrequentie opgewekt magnetisch veld IEC 61000-4-8</td>
<td>30 A/m</td>
<td>30 A/m</td>
<td>Als vertekeningen van het beeld optreden, kan het noodzakelijk zijn om het FUJIFILM SonoSite ultrasone systeem verder van de bronnen van door netfrequentie opgewekte magnetische velden te plaatsen of om magnetische afscherming te plaatsen. Het door netfrequentie opgewekte magnetische veld dient te worden gemeten op de beoogde installatielocatie om te garanderen dat dit veld laag genoeg is.</td>
</tr>
<tr>
<td>Geleide RF IEC 61000-4-6</td>
<td>3 Vrms 150 kHz tot 80 MHz 6 Vrms in ISM-banden</td>
<td>3 Vrms 6 Vrms in ISM-banden</td>
<td>Draagbare en mobiele radiofrequentiecommunicatieapparatuur (RF-communicatieapparatuur) mag niet dichter bij enig deel van het FUJIFILM SonoSite ultrasone systeem, inclusief de kabels, gebruikt worden dan de aanbevolen scheidingsafstand, berekend aan de hand van de formule die van toepassing is op de frequentie van de zender. Aanbevolen scheidingsafstand (d = 1,2 \sqrt{P})</td>
</tr>
</tbody>
</table>
Verklaring van de fabrikant

<table>
<thead>
<tr>
<th>Immunitetstest</th>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving</th>
</tr>
</thead>
</table>
| Uitgezonden RF IEC 61000-4-3 | 3 V/m 80 MHz tot 2,7 GHz | 3 V/m 80 MHz tot 2,7 GHz | $d = 1,2 \sqrt{P}$ 80 MHz tot 800 MHz
$d = 2,3 \sqrt{P}$ 800 MHz tot 2,5 GHz
Waarbij P het maximale nominale uitgangsvermogen van de zender in watt (10) is volgens de fabrikant van de zender en d de aanbevolen scheidingsafstand in meter (m) is.
De door vaste RF-zenders uitgestraalde veldsterkte, zoals vastgesteld door elektromagnetische meting van de locatie, moet lager zijn dan het nalevingsniveau in elk frequentiebereik.
Er kan storing optreden in de omgeving van apparatuur die van onderstaand symbool is voorzien:
(IEC 60417 nr. 417-IEC-5140: ‘Bron van niet-ioniserende straling’)

|---|---------------------------------|---------------------------------|

Opmerking

U_T is de netspanning vóór toepassing van het testniveau.
Bij 80 MHz en 800 MHz geldt het hogere frequentiebereik.
Deze richtlijnen zijn mogelijk niet op alle situaties van toepassing.
Elektromagnetische verstrooing wordt beïnvloed door absorptie door en weerkaatsing van structuren, voorwerpen en personen.
Compatibele accessoires en randapparatuur

De volgende waarschuwing is toegevoegd in de gebruikershandleidingen van de SonoSite Edge II en de SonoSite SII. De herziening wordt in de volgende update doorgevoerd.

WAARSCHUWING Als er randapparatuur op het systeem is aangesloten, dient u er zeker van te zijn dat het systeem en de randapparatuur op hetzelfde stopcontactcircuit zijn aangesloten.
Symbolen op labels

Tabel 7: Labelsymbolen van normen

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fabrikant</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.1.1</td>
<td>Duidt de fabrikant van de medische apparatuur aan, volgens EU-richtlijnen 90/385/EEG, 93/42/EEG en 98/79/EG</td>
</tr>
<tr>
<td></td>
<td>Niet-ioniserende elektromagnetische straling</td>
<td>IEC 60601-1-2:2007 Medische elektrische apparatuur deel 1-2: Algemene vereisten voor basisveiligheid en essentiële prestaties – secundaire norm: elektromagnetische compatibiliteit</td>
<td>5.1.1</td>
<td>Wordt gebruikt om een algemeen verhoogd, mogelijk schadelijk niveau van niet-ioniserende straling aan te duiden of om aan te duiden dat apparaten of systemen (bijvoorbeeld op het gebied van medische elektronica) RF-zenders bevatten of bedoeld gebruik maken van elektromagnetische RF-energie voor diagnose of behandeling</td>
</tr>
<tr>
<td></td>
<td>Erkende vertegenwoordiger in de Europese Unie</td>
<td>ISO 15223-1 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen.</td>
<td>5.1.2</td>
<td>Duidt de erkende vertegenwoordiger in de Europese Unie aan</td>
</tr>
<tr>
<td></td>
<td>Serienummer</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.1.7</td>
<td>Geeft het serienummer van de fabrikant aan, waarmee een specifiek medisch instrument kan worden geïdentificeerd</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Title</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentie-nummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Let op</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen voor het gebruik met medische hulpmideletiketten, etikettering (labeling) en informatievoorziening – Deel 1: Algemene eisen</td>
<td>5.4.4</td>
<td>Geeft aan dat de gebruiker de gebruiksaanwijzing moet raadplegen met betrekking tot belangrijke veiligheidsinformatie, zoals waarschuwingen en voorzorgsmaatregelen, die om diverse redenen niet op het medische instrument zelf kunnen worden weergegeven.</td>
</tr>
<tr>
<td></td>
<td>Breekbaar: voorzichtig behandelen</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.3.1</td>
<td>Duidt een medisch instrument aan dat defect of beschadigd kan raken als er niet voorzichtig mee wordt omgegaan.</td>
</tr>
<tr>
<td></td>
<td>Droog houden</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.3.4</td>
<td>Duidt een medisch instrument aan dat moet worden beschermd tegen vocht.</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentie-nummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatuur-limiet</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.3.7</td>
<td>Duidt de minimale en maximale temperatuur aan waaraan het medische instrument veilig kan worden blootgesteld</td>
</tr>
<tr>
<td></td>
<td>Limiet atmosferische druk</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.3.9</td>
<td>Duidt de minimale en maximale atmosferische druk aan waaraan het medische instrument veilig kan worden blootgesteld</td>
</tr>
<tr>
<td></td>
<td>Vochtigheids-beperking</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.3.8</td>
<td>Duidt de minimale en maximale vochtigheid aan waaraan het medische instrument veilig kan worden blootgesteld</td>
</tr>
<tr>
<td></td>
<td>Mate van bescherming tegen binnen- dringing die door de behuizing wordt geboden</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.3</td>
<td>Beschermd tegen de effecten van tijdelijke onderdompeling</td>
</tr>
<tr>
<td></td>
<td>Raadpleeg de handleiding/het boekje met instructies</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.2-10</td>
<td>Volg de gebruiksaanwijzing (in overeenstemming met IEC 60601-1)</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raadpleeg de gebruiksaanwijzing</td>
<td>ISO 15223-1:2016 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.4.3</td>
<td>Geeft aan dat de gebruiker de gebruiksaanwijzing moet raadplegen</td>
</tr>
<tr>
<td></td>
<td>Netspanning</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>5032</td>
<td>Duidt op het typeplaatje aan dat de apparatuur uitsluitend geschikt is voor netstroom om correcte aansluitingen te identificeren</td>
</tr>
<tr>
<td></td>
<td>CE-markering</td>
<td>Richtlijn 93/42/EEG van de Raad</td>
<td>Artikel 17 Bijlage XII</td>
<td>Duidt aan dat wordt voldaan aan de technische eisen van de Europese Unie</td>
</tr>
<tr>
<td> Referentienr. betreffende orgaan: 2797</td>
<td>Conformité Européenne</td>
<td>Richtlijn 93/42/EEG van de Raad</td>
<td>Artikel 17, bijlage XII</td>
<td>Duidt aan dat wordt voldaan aan de technische eisen van de Europese Unie en identificeert het betreffende orgaan dat verantwoordelijk is voor de implementatie van de procedures die worden beschreven in bijlagen II, IV, V en VI.</td>
</tr>
<tr>
<td>![]</td>
<td>Gevaarlijke spanning</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>5036</td>
<td>Duidt gevaren aan als gevolg van gevaarlijke spanning</td>
</tr>
<tr>
<td></td>
<td>Limiet voor op elkaar stapelen</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>2403</td>
<td>Duidt aan dat de onderdelen niet hoger verticaal mogen worden gestapeld dan het opgegeven aantal onderdelen</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Let op heat</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>5041</td>
<td>Duidt aan dat het gemarkeerde onderdeel heet kan zijn en niet zonder voorzorgsmaatregelen mag worden aangeraakt.</td>
</tr>
<tr>
<td></td>
<td>Let op, gevaar van statische magnetische velden</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>6204</td>
<td>Identificeert locaties met potentieel gevaarlijke statische magnetische velden en krachten in een installatie.</td>
</tr>
<tr>
<td></td>
<td>Toegepaste onderdelen van het type BF</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.2-10</td>
<td>Identificeert toegepast onderdeel van het type BF dat voldoet aan IEC 60601-1.</td>
</tr>
<tr>
<td></td>
<td>Defibrillatie-bestendig toegepast onderdeel type CF</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.1-27</td>
<td>Identificeert toegepast onderdeel van het defibrillatiebestendige type CF dat voldoet aan IEC 60601-1.</td>
</tr>
<tr>
<td></td>
<td>Elektrostatisch gevoelige apparatuur</td>
<td>IEC 60417:2002 Grafische symbolen voor gebruik op apparatuur</td>
<td>5134</td>
<td>Identificeert verpakkingen die elektrostatisch gevoelige apparatuur bevatten of identificeert een apparaat of een connector die niet is getest op immunitiet voor elektrostatische ontlading.</td>
</tr>
</tbody>
</table>

Symbolen op labels 595
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batchcode, datumcode of partijcode, type controlenummer</td>
<td>ISO 15223-1 Medische hulpmiddelen – symbolen die moeten worden gebruikt voor etiketten, etikettering en informatievoorziening van medische hulpmiddelen – deel 1: Algemene eisen</td>
<td>5.1.5</td>
<td>Duidt de batchcode van de fabrikant aan zodat de batch of partij kan worden geïdentificeerd</td>
</tr>
<tr>
<td></td>
<td>Biologisch risico</td>
<td>ISO 7010 – Grafische symbolen -- Veiligheidskleuren en - signalering</td>
<td>W009</td>
<td>Om te waarschuwen voor biologisch risico</td>
</tr>
<tr>
<td></td>
<td>INMETRO- veiligheids- symbolen</td>
<td>–</td>
<td>–</td>
<td>Duidt door Brazilië geaccrediteerde certificeringsinstantie van National Institute of Metrology Standardization and Industrial Quality (INMETRO) aan</td>
</tr>
<tr>
<td></td>
<td>Certificerings- markering Canadian Standards Association</td>
<td>–</td>
<td>–</td>
<td>CSA-certificeringsmarkering die aanduidt dat het product voldoet aan de van toepassing zijnde CSA- en ANSI/UL-vereisten en is geautoriseerd voor gebruik in Canada en de VS.</td>
</tr>
<tr>
<td></td>
<td>Recycling golfkarton</td>
<td>–</td>
<td>–</td>
<td>Transportdoos is gemaakt van golfkarton en moet als zodanig worden gerecycled</td>
</tr>
<tr>
<td></td>
<td>Fabricatedatum</td>
<td>ISO 7000 – Grafische symbolen voor gebruik op apparatuur</td>
<td>5.1.3</td>
<td>Om de datum aan te duiden waarop een product is gefabriceerd</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>Gelijkstroom (DC)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>GEL</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Resy - Recyclesymbool</td>
<td>–</td>
<td>–</td>
<td>Recycling papier</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>IPX7</td>
<td>Materie van bescherming tegen binnendringing die door de behuizing wordt geboden</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.3</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>IPX8</td>
<td>Mate van bescherming tegen binnendringing die door de behuizing wordt geboden</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>D.3</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Geeft voorzichtig behandelen aan</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Geeft aan dat de instructies van de fabrikant voor de desinfectietijd moeten worden opgevolgd</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Duidt aan dat de transducer moet worden gedesinfecteerd</td>
</tr>
</tbody>
</table>

Symbolen op labels

Page 597
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentie-nummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximaal draagvermogen</td>
<td>IEC 60601-1 Medische elektrische apparatuur deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
<td>7.2.21</td>
<td>Geeft het totale gewicht van de apparatuur aan, inclusief de veilige werkbelasting</td>
</tr>
<tr>
<td></td>
<td>Certificerings-markering van Underwriters Laboratories</td>
<td>–</td>
<td>–</td>
<td>Certificeringsmarkering uitsluitend voor elektrische schokken, brand en mechanische gevaren</td>
</tr>
<tr>
<td></td>
<td>UL-productcertificering.</td>
<td>–</td>
<td>–</td>
<td>Het product of bedrijf voldoet aan de strenge normen voor productveiligheid.</td>
</tr>
<tr>
<td></td>
<td>China Pollution Control (10)</td>
<td>ISO 7000:2014 Grafische symbolen voor gebruik op apparatuur</td>
<td>1135</td>
<td>Vervuilingsbeheer Logo. (Van toepassing op alle onderdelen/producten die staan vermeld in de China RoHS-weergavetabel. Wordt mogelijk niet vermeld op de buitenzijde van sommige onderdelen/producten wegens beperkte ruimte.)</td>
</tr>
</tbody>
</table>
Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentie-nummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>STERILE EO</td>
<td>Gesteriliseerd met ethyleenoxide</td>
<td>ISO 15223-1 Medische hulpmiddelen – symbolen voor het gebruik met medische hulpmiddeletiketten, etikettering (labeling) en informatievoorziening – Deel 1: Algemene eisen</td>
<td>5.2.3</td>
<td>Duidt een medisch instrument aan dat is gesteriliseerd met ethyleenoxide</td>
</tr>
<tr>
<td>STERILE R</td>
<td>Gesteriliseerd met bestraling</td>
<td>ISO 15223-1 Medische hulpmiddelen – symbolen voor het gebruik met medische hulpmiddeletiketten, etikettering (labeling) en informatievoorziening – Deel 1: Algemene eisen</td>
<td>5.2.4</td>
<td>Duidt een medisch instrument aan dat is gesteriliseerd met bestraling</td>
</tr>
</tbody>
</table>

China
Verplichte certificerings-markering (‘CCC-markering’). Een verplichte veiligheidsmarkering voor naleving van de Chinese nationale normen voor veel producten die worden verkocht in de Volksrepubliek China.
Het volgende overbodige gedeelte is verwijderd uit de gebruikershandleiding van de SonoSite SII. Dezelfde informatie is ook terug te vinden in Tabel 9-2 van de gebruikershandleiding. De herziening wordt in de volgende update doorgevoerd.

Tabel 8: Ondersteunde transducers

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Maximale kabellengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11x-transducer</td>
<td>1,8 m</td>
</tr>
<tr>
<td>rC60xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HFL38xi-transducer standaard/versterkt</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HFL50x-transducer</td>
<td>1,7 m</td>
</tr>
<tr>
<td>HSL25x-transducer</td>
<td>2,4 m</td>
</tr>
<tr>
<td>ICTx-transducer</td>
<td>1,7 m</td>
</tr>
</tbody>
</table>

De maximale kabellengte voor transducers wordt gemeten tussen de trekontlastingen. De vermelde lengtes omvatten niet de lengtes van de kabel op de volgende locaties: onder de trekontlastingen, aan de binnenzijde van de transducerbehuizing en aan de binnenzijde van de transducerconnector.

Specificaties

Ondersteunde transducers (SonoSite SII)

Het volgende overbodige gedeelte is verwijderd uit de gebruikershandleiding van de SonoSite SII. Dezelfde informatie is ook terug te vinden in Tabel 9-2 van de gebruikershandleiding. De herziening wordt in de volgende update doorgevoerd.

Tabel 7: Labelsymbolen van normen (vervolg)

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Titel</th>
<th>Organisatie die de norm heeft opgesteld</th>
<th>Referentienummer</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(alleen SII) Gevaarlijke spanning</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>5036</td>
<td>Duidt gevaren aan als gevolg van gevaarlijke spanning</td>
</tr>
<tr>
<td></td>
<td>(alleen SII) Alleen voor gebruik binnenshuis</td>
<td>ISO 7000/IEC 60417 Grafische symbolen voor gebruik op apparatuur</td>
<td>5957</td>
<td>Geeft elektrische apparatuur aan die voornamelijk voor gebruik binnenshuis is ontworpen</td>
</tr>
</tbody>
</table>
Normen voor elektromechanische veiligheid

Tabel 9: Normen voor elektromechanische veiligheid

<table>
<thead>
<tr>
<th>Norm</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA C22.2 nr. 60601-1:2014 (editie 3.1)</td>
<td>Medische elektrische apparatuur – deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
</tr>
<tr>
<td>IEC 60601-1:2012 (editie 3.1)</td>
<td>Medische elektrische apparatuur – deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
</tr>
<tr>
<td>IEC 60601-1-6:2013</td>
<td>Medische elektrische apparatuur deel 1-6: Algemene vereisten voor basisveiligheid en essentiële prestaties – Secundaire norm: Bruikbaarheid</td>
</tr>
<tr>
<td>JIS T0601-1:2012 (3e editie)</td>
<td>Japanse industrienorm, medische elektrische apparatuur – deel 1: Algemene vereisten voor basisveiligheid en essentiële prestaties</td>
</tr>
</tbody>
</table>

De maximale kabellengte voor transducers wordt gemeten tussen de trekontlastingen. De vermelde lengtes omvatten niet de lengtes van de kabel op de volgende locaties: onder de trekontlastingen, aan de binnenzijde van de transducerbehuizing en aan de binnenzijde van de transducerconnector.
Akoestisch vermogen

ALARA-principe

ALARA-principe toepassen

De beeldvormingsmodus van het systeem, die door de gebruiker van het ultrasonde systeem wordt geselecteerd, wordt bepaald door de vereiste diagnostische informatie. 2D-beeldvorming levert anatomische informatie; CPD-beeldvorming biedt informatie over de energie of amplitudesterkte van het Doppler-singaal in de loop van de tijd op een bepaalde anatomische locatie en wordt gebruikt om de aanwezigheid van bloedstroom te detecteren; Color-beeldvorming levert informatie over de energie of amplitudesterkte van het Doppler-singaal in de loop van de tijd op een bepaalde anatomische locatie en wordt gebruikt om de aanwezigheid, snelheid en richting van bloedstroom te detecteren; Tissue Harmonic Imaging (THI) gebruikt hogere ontvangen frequenties om onduidelijkheid en artefacten te verminderen en resolutie op het 2D-beeld te verbeteren. Als de gekwalificeerde gebruiker van het ultrasonde systeem de aard van de gebruikte beeldvormingsmodus begrijpt, kan het ALARA-principe worden toegepast.

Passend gebruik van ultrageluid betekent het beperken van blootstelling van de patiënt tot het laagste ultrasonic vermogen gedurende de kortst mogelijke tijd die nodig is om geaccepteerde diagnostische resultaten te verkrijgen. Beslissingen die passend gebruik ondersteunen, zijn gebaseerd op het type patiënt, het onderzoekstype, de geschiedenis van de patiënt, het gemak of de moeilijkheid van het verkrijgen van diagnostisch nuttige informatie en mogelijk plaatselijke verhitting van de patiënt wegens de oppervlaktetemperatuur van de transducer.

Het systeem is zodanig ontworpen dat de temperatuur van het oppervlak van de transducer de limieten die in IEC 60601-2-37: Bijzondere eis voor de veiligheid van ultrasonische medische diagnostische en bewakingsapparatuur worden vermeld, niet overschrijdt. Raadpleeg ‘Stijging van de oppervlaktetemperatuur van de transducer’ op pagina 10-9. In geval van een storing in het apparaat zijn er redundante bedieningselementen die het vermogen van de transducer begrenzen. Dit wordt bereikt door een elektrisch ontwerp waarmee zowel de stroom als de spanning van de voeding naar de transducer wordt beperkt.

De echografist gebruikt de bedieningselementen van het systeem om de beeldkwaliteit af te stellen en het ultrasonic vermogen te beperken. De bedieningselementen van het systeem zijn onderverdeeld in drie categorieën met betrekking tot vermogen: bedieningselementen die het vermogen direct beïnvloeden, bedieningselementen die het vermogen indirect beïnvloeden en bedieningselementen van de ontvangst.
Directe bedieningselementen

Voor alle beeldvormingsmodi wordt de temporaalgemiddelde spatiële-piekintensiteit (ISPTA) van 720 mW/cm² niet overschreden. (Voor het oftalmologische of orbitale onderzoek is het akoestische vermogen beperkt tot de volgende waarden: ISPTA overschrijdt 50 mW/cm² niet; TI overschrijdt 1,0 niet en MI overschrijdt 0,23 niet.) Bij sommige transducers in sommige beeldvormingsmodi kunnen de mechanische index (MI) en thermische index (TI) waarden groter dan 1,0 overschrijden. U kunt de MI- en TI-waarden bewaken en de bedieningselementen aanpassen om deze waarden te verminderen. Raadpleeg ‘Richtlijnen voor het verminderen van MI en TI’ op pagina 10-3. Een manier om te voldoen aan het ALARA-principe is de MI- of TI-waarden instellen op een lage indexwaarde en vervolgens dit niveau aanpassen totdat een beeld of Doppler-modus wordt verkregen waarmee u tevreden bent. Raadpleeg voor meer informatie over MI en TI Medical Ultrasound Safety, AIUM (bij elk systeem wordt een exemplaar geleverd) en IEC 60601-2-37 Annex ‘Guidance on the interpretation of TI and MI to be used to inform the operator.’

Vermogensweergave

Gerelateerde begeleidende documenten

Medical Ultrasound Safety, American Institute of Ultrasound in Medicine (AIUM), 2014. (Bij elk systeem wordt een exemplaar geleverd.)

Stijging van de oppervlaktetemperatuur van de transducer

In tabel 10-4 en tabel 10-5 wordt de gemeten stijging van de oppervlaktetemperatuur ten opzichte van de omgevingstemperatuur (23 °C ± 3 °C) van transducers vermeld die worden gebruikt op het ultrasone systeem. De temperaturen werden gemeten conform IEC 60601-2-37 met bedieningselementen en instellingen zo ingesteld dat er maximale temperaturen ontstonden.

Akoestisch vermogen meten

Tabellen voor akoestisch vermogen

De indeling van de tabellen met akoestische vermogens is bijgewerkt.

<table>
<thead>
<tr>
<th>Transducermodel: C8x Bedrijfsmodus: 2D</th>
<th>606</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transducermodel: C8x Bedrijfsmodus: M Mode</td>
<td>607</td>
</tr>
<tr>
<td>Transducermodel: C8x Bedrijfsmodus: Color/CPD</td>
<td>608</td>
</tr>
<tr>
<td>Transducermodel: C8x Bedrijfsmodus: PW Doppler</td>
<td>609</td>
</tr>
<tr>
<td>Transducermodel: C11x Bedrijfsmodus: PW Doppler</td>
<td>610</td>
</tr>
<tr>
<td>Transducermodel: C35x Bedrijfsmodus: 2D</td>
<td>611</td>
</tr>
<tr>
<td>Transducermodel: C35x Bedrijfsmodus: PW Doppler</td>
<td>612</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: 2D</td>
<td>613</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: M Mode</td>
<td>614</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: Color/CPD</td>
<td>615</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler</td>
<td>616</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi Bedrijfsmodus: 2D</td>
<td>617</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi Bedrijfsmodus: M Mode</td>
<td>618</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi Bedrijfsmodus: Color/CPD</td>
<td>619</td>
</tr>
<tr>
<td>Transducermodel: HFL38xi Bedrijfsmodus: PW Doppler</td>
<td>620</td>
</tr>
<tr>
<td>Transducermodel: HFL50x Bedrijfsmodus: 2D</td>
<td>621</td>
</tr>
<tr>
<td>Transducermodel: HFL50x Bedrijfsmodus: M Mode</td>
<td>622</td>
</tr>
<tr>
<td>Transducermodel: HFL50x Bedrijfsmodus: Color</td>
<td>623</td>
</tr>
<tr>
<td>Transducermodel: HFL50x Bedrijfsmodus: PW Doppler</td>
<td>624</td>
</tr>
<tr>
<td>Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: 2D</td>
<td>625</td>
</tr>
<tr>
<td>Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: M Mode</td>
<td>626</td>
</tr>
<tr>
<td>Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: Color/CPD</td>
<td>627</td>
</tr>
<tr>
<td>Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler</td>
<td>628</td>
</tr>
<tr>
<td>Transducermodel: HSL25x Bedrijfsmodus: 2D</td>
<td>629</td>
</tr>
<tr>
<td>Transducermodel: HSL25x Bedrijfsmodus: Color/CPD</td>
<td>630</td>
</tr>
<tr>
<td>Transducermodel: HSL25x Bedrijfsmodus: PW Doppler</td>
<td>631</td>
</tr>
<tr>
<td>Transducermodel: ICTx Bedrijfsmodus: PW Doppler</td>
<td>632</td>
</tr>
<tr>
<td>Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: 2D</td>
<td>633</td>
</tr>
<tr>
<td>Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: M Mode</td>
<td>634</td>
</tr>
<tr>
<td>Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: Color/CPD</td>
<td>635</td>
</tr>
<tr>
<td>Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler</td>
<td>636</td>
</tr>
<tr>
<td>Transducermodel: L25x Bedrijfsmodus: 2D</td>
<td>637</td>
</tr>
<tr>
<td>Transducermodel: L25x Bedrijfsmodus: Color/CPD</td>
<td>638</td>
</tr>
<tr>
<td>Transducermodel: L25x Bedrijfsmodus: PW Doppler</td>
<td>639</td>
</tr>
<tr>
<td>Transducermodel: L38xi Bedrijfsmodus: 2D</td>
<td>640</td>
</tr>
<tr>
<td>Transducermodel: L38xi Bedrijfsmodus: M Mode</td>
<td>641</td>
</tr>
<tr>
<td>Transducermodel: L38xi Bedrijfsmodus: Color/CPD</td>
<td>642</td>
</tr>
<tr>
<td>Transducermodel: L38xi Bedrijfsmodus: PW Doppler</td>
<td>643</td>
</tr>
<tr>
<td>Transducermodel: P10x Bedrijfsmodus: Color</td>
<td>644</td>
</tr>
<tr>
<td>Transducermodel: P10x Bedrijfsmodus: CW Doppler</td>
<td>645</td>
</tr>
<tr>
<td>Transducermodel: P10x Bedrijfsmodus: PW Doppler</td>
<td>646</td>
</tr>
<tr>
<td>Transducermodel: rC60xi Bedrijfsmodus: 2D</td>
<td>647</td>
</tr>
<tr>
<td>Transducermodel: rC60xi Bedrijfsmodus: M Mode</td>
<td>648</td>
</tr>
<tr>
<td>Transducermodel: rC60xi Bedrijfsmodus: Color/CPD</td>
<td>649</td>
</tr>
<tr>
<td>Transducermodel: rC60xi Bedrijfsmodus: PW Doppler</td>
<td>650</td>
</tr>
<tr>
<td>Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: 2D</td>
<td>651</td>
</tr>
<tr>
<td>Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: M Mode</td>
<td>652</td>
</tr>
<tr>
<td>Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: Color/CPD</td>
<td>653</td>
</tr>
<tr>
<td>Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: PW Doppler</td>
<td>654</td>
</tr>
<tr>
<td>Transducermodel: rP19x Bedrijfsmodus: 2D</td>
<td>655</td>
</tr>
<tr>
<td>Transducermodel: rP19x Bedrijfsmodus: M Mode</td>
<td>656</td>
</tr>
<tr>
<td>Transducermodel: rP19x Bedrijfsmodus: Color/CPD</td>
<td>657</td>
</tr>
<tr>
<td>Transducermodel: rP19x Bedrijfsmodus: CW Doppler</td>
<td>658</td>
</tr>
<tr>
<td>Transducermodel: rP19x Bedrijfsmodus: PW Doppler</td>
<td>659</td>
</tr>
<tr>
<td>Transducermodel: TEExi Bedrijfsmodus: CW Doppler</td>
<td>660</td>
</tr>
<tr>
<td>Transducermodel: TEExi Bedrijfsmodus: PW Doppler</td>
<td>661</td>
</tr>
</tbody>
</table>
Tabel 10: Transducermodel: C8x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper vlakte</td>
<td>Onder opper vlakte</td>
<td>Aan opper vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,1</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{P_{a,\alpha}}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spTa,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spTa} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>3,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{p} bij z_{pii}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pia,\alpha}$ (W/cm²)</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pia,\alpha}$ of $z_{sia,\alpha}$ (mW/cm²)</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pia} of z_{sia} (mW/cm²)</td>
<td>25,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pia} (MPa)</td>
<td>3,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{p} bij z_{pia}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraanial of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsmatigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 11: Transducermodel: C8x Bedrijfsmode: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MI</td>
<td>MI</td>
<td>MI</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,07</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>3,57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmode; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmomenten, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 12: Transducermodel: C8x Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r, \alpha}$ bij z_{MI} (MPa)</td>
<td>2,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ bij $z_{pii, \alpha}$ (W/cm²)</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta, \alpha}$ bij $z_{pii, \alpha}$ of $z_{sii, \alpha}$ (mW/cm²)</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)</td>
<td>Pen/1,5 – 1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Hoog/alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Smal/alle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 13: Transducermodel: C8x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,0</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,4</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>23,1</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>23,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,80</td>
<td>#</td>
<td>4,80</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sil,\alpha}$ (mW/cm²)</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{sppt} bij z_{pii} of z_{sil} (mW/cm²)</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Pro</td>
<td></td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 4</td>
<td></td>
<td>Zone 4</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td></td>
<td>1008</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 14: Transducermodel: C11x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIB Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIC Aan opper-vlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,5</td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr, α bij zMI (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>24,6</td>
<td>21,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td></td>
<td>#</td>
<td>24,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zs (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zb (cm)</td>
<td></td>
<td></td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zMI (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpii, α (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,37</td>
<td>4,36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpa, α bij zpii, α (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta, α bij zpii, α of zsi, α (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta bij zpi of zsii (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr i bij zpii (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 1</td>
<td></td>
<td>Zone 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>10,417</td>
<td></td>
<td>6250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 15: Transducermodel: C35x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Maximale indexwaarde</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(a) Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>3,45</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>7,98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sli,\alpha}$ (mW/cm2)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sli} (mW/cm2)</td>
<td>16,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>2,61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
- (b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
- # Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
- — Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 16: Transducermodel: C35x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>1,5</td>
<td>2,6</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{Ml} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>72,8</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td>71,1</td>
<td>47,1</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>z_{Ml} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pi,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{awf} (MHz)</td>
<td>#</td>
<td>4,35</td>
<td>4,37</td>
<td>#</td>
</tr>
<tr>
<td>Vergeleken frequenties</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pi,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pi,\alpha}$ of $z_{si,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ bij $z_{pi,\alpha}$ of z_{si} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pi} of z_{si} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pi} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.

(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsmstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.

Bedrijfsvoorwaarden

<table>
<thead>
<tr>
<th>Onderzoekstype</th>
<th>Wervelkolom</th>
<th>Wervelkolom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 5</td>
<td>Zone 0</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>6250</td>
<td>15.625</td>
</tr>
</tbody>
</table>
Tabel 17: Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmode: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,007</td>
<td>0,007</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,77</td>
<td>0,77</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,21</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,59</td>
<td>6,75</td>
<td>6,75</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>19,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>11,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{si,\alpha}$ (mW/cm²)</td>
<td></td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{si} (mW/cm²)</td>
<td></td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{p} (MPa)</td>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>4,9</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Aan</td>
<td>Aan</td>
<td>Aan</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmode; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmode, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 18: Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,003</td>
<td>0,004</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_M (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_M (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,58</td>
<td>6,86</td>
<td>6,78</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>0,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Pen</td>
<td>Res</td>
<td>Res</td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,5</td>
<td>6,0</td>
<td>4,0</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,11</td>
<td>1,11</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td>0,75</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,37</td>
<td>5,37</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>4537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{piii,\alpha}$ (W/cm²)</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{piii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-optimisatie/diepte (cm)</td>
<td>Pen/1,5</td>
<td>Pen/4,9</td>
<td>Pen/4,9</td>
<td></td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Hoog/7813</td>
<td>Hoog/6944</td>
<td>Hoog/6944</td>
<td></td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Onderzijde/klein</td>
<td>Opg/smal</td>
<td>Opg/smal</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 20: Transducermodel: HFL38xi (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI ±</th>
<th>TIS Aan</th>
<th>TIS Onder</th>
<th>TIB Aan</th>
<th>TIB Onder</th>
<th>TIC Aan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,18</td>
<td>0,09</td>
<td>0,17</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,09</td>
<td>0,06</td>
<td>0,09</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>3,56</td>
<td>3,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>5,33</td>
<td>5,33</td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Akoestische parameters

prr (Hz)	1302			
srr (Hz)	–			
n_{pps}	1			
$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)	6,6			
$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)	10,9			
l_{spa} bij z_{pii} of z_{sii} (mW/cm²)	15,0			
p_r bij z_{pii} (MPa)	0,48			

Overige informatie

<table>
<thead>
<tr>
<th>Onderzoekstype</th>
<th>Oph</th>
<th>Oph</th>
<th>Oph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1302</td>
<td>10.417</td>
<td>10.417</td>
</tr>
</tbody>
</table>

Bedrijfsvoorwaarden

(a) Deze index is niet vereist voor deze bedrijfsmodus: waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 21: Transducermodel: HFL38xi Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>11,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>19,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Akoestische parameters

Overige informatie

Bedrijfsvoorwaarden

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.

— Er zijn geen gegevens gerapporteerd voor deze bedrijfsoorzaak, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.

Tabellen voor akoestisch vermogen 617
Tabel 22: Transducermodel: HFL38xi Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,12</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{\text{pii,}\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{p_{a,\alpha}}$ bij $z_{\text{pii,}\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{\text{spta,}\alpha}$ bij $z_{\text{pii,}\alpha}$ of $z_{\text{sii,}\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} or z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>NrV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td></td>
<td></td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,α}$ bij z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1×1}$ (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,α}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>2223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,α}$ bij $z_{pii,α}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,α}$ bij $z_{pii,α}$ of $z_{sii,α}$ (mW/cm²)</td>
<td>27,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>40,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p, bij z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>SmP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)</td>
<td>Res/3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Opg/opg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmustandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>1,1</td>
<td>2,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>1,1</td>
<td>0,8</td>
<td>1,1</td>
<td>2,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij $z_{M}(\text{MPa})$</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>47,7</td>
<td>47,7</td>
<td></td>
</tr>
<tr>
<td>z_{a} (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td>1,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{M}(\text{cm})$</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,34</td>
<td>4,86</td>
<td>4,86</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{p,\alpha}$ bij $z_{p,\alpha}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{p,\alpha}$ of $z_{s,\alpha}$ (mW/cm²)</td>
<td>102,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{a} of z_{s} (mW/cm²)</td>
<td>210,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{f} bij z_{p} (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Nrv</td>
<td>Art</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>3125</td>
<td>3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsoorzaak, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 25: Transducermodel: HFL50x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>3,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>2733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t} bij z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Aan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraïnale of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 26: Transducermodel: HFL50x Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>3,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,75</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>163,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} or z_{sii} (mW/cm²)</td>
<td>333,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>4,35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 27: Transducermodel: HFL50x Bedrijfsmodus: Color

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{a} (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>5,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>8233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>26,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>39,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>3,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie/diepte (cm)</td>
<td>Laag/3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 28: Transducermodel: HFL50x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>1,1</td>
<td>1,9</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,1</td>
<td>0,7</td>
<td>1,1</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>42,6</td>
<td>42,6</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>42,6</td>
<td></td>
<td>42,6</td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td></td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>1,10</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{ii,\alpha}}$ (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akoestische informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{p_{ii,\alpha}}$ (W/cm²)</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta,\alpha}}$ bij $z_{p_{ii,\alpha}}$ of $z_{s_{li,\alpha}}$ (mW/cm²)</td>
<td>399,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sp_{ta}}$ bij $z_{p_{ii}}$ of $z_{s_{li}}$ (mW/cm²)</td>
<td>599,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij $z_{p_{ii}}$ (MPa)</td>
<td>3,23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Monstervolumenpositie</td>
<td>Zone 3</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>1563 - 3125</td>
<td>1563 - 3125</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>p_r, α bij z_Mi (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_Mi (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii, \alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa, \alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pti} of z_{sii} (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pti} (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
</tr>
<tr>
<td>MB</td>
<td>Aan</td>
<td>Aan</td>
<td>Aan</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmethodheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 30: Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,01</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td></td>
<td>14,9</td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td></td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm2)</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>p_f bij z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 31: Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>TIB Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>TIC Aan oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>1,9</td>
<td>1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Akoestische parameters

- $p_{r,\alpha}$ bij z_{MI} (MPa): 0,42
- P (mW): 2,9
- P_{1x1} (mW): 1,9
- z_s (cm): --
- z_b (cm): --
- z_{MI} (cm): 0,7
- $z_{pii,\alpha}$ (cm): 0,7
- f_{awf} (MHz): 6,11
- p_{r} bij z_{pii} (MPa): 0,49

Overige informatie

- p_{r} bij z_{pii} (MPa): 0,49
- $I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²): 7,5
- $I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²): 1,1
- I_{spta} bij z_{pii} of z_{sii} (mW/cm²): 1,6

Onderzoekstype

- Oph

Bedrijfsvoorwaarden

- Modus: CVD
- 2D-optimalisatie/diepte (cm): Pen/1,9
- Kleuroptimalisatie/PRF (Hz): Laag/401
- Positie/grootte kleurenvak: Opg/ogp

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 32: Transducermodel: HSL25x (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIB Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIC Aan opper-vlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>0,80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{{pii,\alpha}}$ (cm)</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{{pii,\alpha}}$ (W/cm²)</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{{pii,\alpha}}$ of $z_{{sii,\alpha}}$ (mW/cm²)</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overige informatie

<table>
<thead>
<tr>
<th>Bedrijfsvoorwaarden</th>
<th>Onderzoektype</th>
<th>Monstervolumegrootte (mm)</th>
<th>Monstervolumepositie</th>
<th>PRF (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oph</td>
<td>1</td>
<td>Zone 7</td>
<td>1953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Zone 7</td>
<td>5208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Zone 7</td>
<td>5208</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.

628 Tabellen voor akoestisch vermogen
Tabel 33: Transducermodel: HSL25x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{Mi} (MPa)</td>
<td>2,87</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_{Mi} (cm)</td>
<td>0,8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1061</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>478</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>12,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>16,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>3,39</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,9 – 2,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mbe</td>
<td>Aan</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsmomdheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Table 34: Transducer model: HSL25x Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIB</th>
<th>Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIC</th>
<th>Aan opper-vlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>3079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ or $z_{sii,\alpha}$ (mW/cm²)</td>
<td>47,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} or z_{sii} (mW/cm²)</td>
<td>63,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabellen voor akoestisch vermogen

Tabel 35: Transducermodel: HSL25x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,5</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Akoestische parameters

- $p_{r,\alpha}$ bij z_{MI} (MPa)
- P (mW)
- P_{1x1} (mW)
- z_s (cm)
- z_b (cm)
- z_{MI} (cm)
- $z_{pii,\alpha}$ (cm)
- f_{awf} (MHz)

Overige informatie

- p_{r} bij z_{pii} (MPa)
- $l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)
- $l_{spt,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)
- l_{spta} bij z_{pii} of z_{sii} (mW/cm2)

Bedrijfsvoorwaarden

<table>
<thead>
<tr>
<th>Bedrijfsvoorwaarden</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderzoekstype</td>
<td>Nrv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 36: Transducermodel: ICTx Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td>(p_{r,\alpha}) bij (z_{MI}) (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>#</td>
<td>16,3</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td>#</td>
<td>1,60</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,36</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bij (z_{pii,\alpha}) (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bij (z_{pii,\alpha}) of (z_{sii,\alpha}) (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{spta}) bij (z_{pii}) of (z_{sii}) (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_r) bij (z_{pii}) (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bij (z_{pii,\alpha}) (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bij (z_{pii,\alpha}) of (z_{sii,\alpha}) (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(l_{spta}) bij (z_{pii}) of (z_{sii}) (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_r) bij (z_{pii}) (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 1</td>
<td>Zone 1</td>
<td>Zone 1</td>
<td>Zone 1</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 37: Transducermodel: L25x (oftalmoologisch gebruik) Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>(TIS)</th>
<th>(TIB)</th>
<th>(TIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MI) & Aan opper-vlakte & Onder opper-vlakte & Aan opper-vlakte & Onder opper-vlakte & Aan opper-vlakte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,02</td>
<td>0,02</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{r,\alpha}) bij (z_{MI}) (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) (mW)</td>
<td></td>
<td>1,62</td>
<td>1,62</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td></td>
<td>0,70</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>7,65</td>
<td>6,97</td>
<td>6,97</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prr) (Hz)</td>
<td>12,580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(srr) (Hz)</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{pa,\alpha}) bij (z_{pii,\alpha}) (W/cm²)</td>
<td>13,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta,\alpha}) bij (z_{pii,\alpha}) of (z_{sii,\alpha}) (mW/cm²)</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{spta}) bij (z_{pii}) of (z_{sii}) (mW/cm²)</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_r) bij (z_{pii}) (MPa)</td>
<td>0,58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Aan opper-vlakte
- Onder opper-vlakte
- Oph
- MB
- Optimalisatie
- Diepte (cm)
- Overige informatie
- Aan

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmomentheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,010</td>
<td>0,020</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,010</td>
<td>0,009</td>
<td>0,013</td>
</tr>
<tr>
<td>$p_{r, \alpha}$ bij z_{MI} (MPa)</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,85</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>$z_{ pii, \alpha}$ (cm)</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>7,59</td>
<td>6,25</td>
<td>6,25</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa, \alpha}$ bij $z_{ pii, \alpha}$ (W/cm²)</td>
<td>14,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta, \alpha}$ bij $z_{ pii, \alpha}$ of $z_{ sii, \alpha}$ (mW/cm²)</td>
<td></td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij $z_{ pii}$ of $z_{ sii}$ (mW/cm²)</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>p_{t} bij $z_{ pii}$ (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,61</td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td>Pen</td>
<td>Pen</td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,9</td>
<td>4,3</td>
<td>4,3</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmogelijkheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 39: Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aan oppervlakte</td>
<td>Aan oppervlakte</td>
<td>Aan oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>MI</td>
<td>0,17</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>1,9</td>
<td></td>
<td>1,9</td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{p} (cm)</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>6,10</td>
<td>6,10</td>
</tr>
<tr>
<td>Pr (Hz)</td>
<td>3096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>8,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{spi,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{spi} of z_{sii} (mW/cm²)</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Oph</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)</td>
<td>Pen/1,9</td>
<td>Pen/5,1</td>
<td>Pen/5,1</td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/401</td>
<td>Gem./4167</td>
<td>Gem./4167</td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Opg/opg</td>
<td>Bovenzijde/kort-breed</td>
<td>Bovenzijde/kort-breed</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraanial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/模us.
Tabel 40: Transducermodel: L25x (oftalmologisch gebruik) Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td></td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,12</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>$p_{r,a}$ bij z_{MI} (MPa)</td>
<td></td>
<td>0,44</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>4,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>0,9</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td>0,9</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,a}$ (cm)</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>6,03</td>
<td>6,03</td>
<td>6,03</td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td></td>
<td>0,56</td>
<td>0,56</td>
<td></td>
</tr>
</tbody>
</table>

Akoestische parameters

<table>
<thead>
<tr>
<th>Akoestische parameters</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,a}$ bij z_{MI}</td>
<td>(MPa)</td>
<td>0,44</td>
</tr>
<tr>
<td>P</td>
<td>(mW)</td>
<td>4,0</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>(mW)</td>
<td>4,0</td>
</tr>
<tr>
<td>z_s</td>
<td>(cm)</td>
<td>0,9</td>
</tr>
<tr>
<td>z_b</td>
<td>(cm)</td>
<td>0,9</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>(cm)</td>
<td>1,2</td>
</tr>
<tr>
<td>$z_{pii,a}$</td>
<td>(cm)</td>
<td>1,2</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>(MHz)</td>
<td>6,03</td>
</tr>
</tbody>
</table>

Overige informatie

<table>
<thead>
<tr>
<th>Overige informatie</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{r} bij z_{pii}</td>
<td>(MPa)</td>
<td>0,56</td>
</tr>
<tr>
<td>$l_{pa,a}$ bij $z_{pii,a}$</td>
<td>(W/cm²)</td>
<td>7,4</td>
</tr>
<tr>
<td>$l_{spta,a}$ bij $z_{pii,a}$ of $z_{sii,a}$</td>
<td>(mW/cm²)</td>
<td>18,4</td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} or z_{sii}</td>
<td>(mW/cm²)</td>
<td>44,9</td>
</tr>
</tbody>
</table>

Bedrijfsvoorwaarden

<table>
<thead>
<tr>
<th>Bedrijfsvoorwaarden</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderzoektype</td>
<td>Oph</td>
<td>Oph</td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 7</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>5208</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmode; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsoorzaak, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 41: Transducermodel: L25x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spa,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spa} bij z_{pii} of z_{sii} (mW/cm2)</td>
<td>16,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>3,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Nrv/Msk/Ven/Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Alle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>1,9 – 2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbe</td>
<td>Aan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 42: Transducermodel: L25x Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,0</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MII} (MPa)</td>
<td>2,35</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MII} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pII,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>6,11</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>5261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>13,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pII,\alpha}$ (W/cm²)</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pII,\alpha}$ of $z_{sII,\alpha}$ (mW/cm²)</td>
<td>81,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pII} of z_{sII} (mW/cm²)</td>
<td>109,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pII} (MPa)</td>
<td>2,78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheden, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 43: Transducermodel: L25x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros akustische</th>
<th>Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>Aan oppervlakte</th>
<th>Onder oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>32,1</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{a} (cm)</td>
<td>#</td>
<td>#</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gegevens</th>
<th>Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>Aan oppervlakte</th>
<th>Onder oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overige informatie</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onderzoekstype</th>
<th>Vas/Ven/Nrv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>8</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 44: Transducermodel: L38xi Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper vlakte</td>
<td>Onder opper vlakte</td>
<td>Aan opper vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r+\alpha}$ bij z_{MI} (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Akoestische parameters				
prr (Hz)	1312			
srr (Hz)	10,3			
n_{pps}	1			
$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)	605			
$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sil,\alpha}$ (mW/cm²)	10,2			
l_{spta} bij z_{pii} of z_{sil} (mW/cm²)	13,5			
p_r bij z_{pii} (MPa)	3,79			

Bedrijfsvoorwaarden				
Onderzoekstype	Nrv			
Optimalisatie	Res			
Diepte (cm)	2,0			
MB	N.v.t.			
Naaldzichtbaarheid	Aan			

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 45: Transducermodel: L38xi Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan oppervlakte</th>
<th>TIS Onder oppervlakte</th>
<th>TIB Aan oppervlakte</th>
<th>TIB Onder oppervlakte</th>
<th>TIC Aan oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>(a)</td>
<td>1,2 (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>0,9</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r,α bij z_{MI} (MPa)</td>
<td></td>
<td>3,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td>37,1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>5,76</td>
<td>#</td>
<td>5,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>181,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td></td>
<td>280,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_t bij z_{pii} (MPa)</td>
<td></td>
<td>4,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfswaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td></td>
<td>Art</td>
<td>Art</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td></td>
<td>Gen</td>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td></td>
<td>4,7</td>
<td>7,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsmodaliteit, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 46: Transducermodel: L38xi Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>p, bij z_M (MPa)</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>64,7</td>
<td>64,7</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>49,0</td>
<td>49,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_M (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>4,82</td>
<td>4,83</td>
<td>4,83</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>2190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>35,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>47,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>3,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Art</td>
<td>Ven</td>
<td>Ven</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)</td>
<td>Pen/2,0</td>
<td>Pen/3,1</td>
<td>Pen/3,1</td>
<td></td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/393</td>
<td>Laag/2315</td>
<td>Laag/2315</td>
<td></td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Opg/opg</td>
<td>Onderzijde/kortsmaal</td>
<td>Onderzijde/kortsmaal</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>2,6</td>
<td>3,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>2,6</td>
<td>1,8</td>
<td>2,6</td>
<td>3,7</td>
</tr>
<tr>
<td>Akkoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td></td>
<td></td>
<td>2,59</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>114,5</td>
<td>114,5</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td></td>
<td>114,5</td>
<td>114,5</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td>4,06</td>
<td>4,78</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td></td>
<td>32,3</td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td></td>
<td>399,8</td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm2)</td>
<td></td>
<td></td>
<td>495,1</td>
<td></td>
</tr>
<tr>
<td>p_t bij z_{pii} (MPa)</td>
<td></td>
<td></td>
<td>2,86</td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Art</td>
<td>Nrv</td>
<td>Nrv</td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 0</td>
<td>Zone 7</td>
<td>Zone 7</td>
<td></td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1008</td>
<td>10.417</td>
<td>10.417</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 48: Transducermodel: P10x Bedrijfsmodus: Color

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>1,1</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akkoestische parameters</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_c,α bij z_Mi (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>42,2</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>z_Mi (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$z_{piii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>3,89</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>pr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>sr (Hz)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{piii,\alpha}$ (W/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{piii,\alpha}$ of $z_{siii,\alpha}$ (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{siii} (mW/cm2)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcranial of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 49: Transducermodel: P10x Bedrijfsmodus: CW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,8</td>
<td>1,7</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,8</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>34,8</td>
<td>25,7</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>34,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>4,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spa,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spa} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Crd</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 3</td>
<td>Zone 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 50: Transducermodel: P10x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>TIB Aan oppervlakte</th>
<th>Onder oppervlakte</th>
<th>TIC Aan oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td>0,6</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>1,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td>26,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>34,4</td>
<td>31,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td></td>
<td></td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>3,87</td>
<td>6,86</td>
<td>3,84</td>
<td>3,86</td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>729,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>2,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bedrijfsvoorwaarden

<table>
<thead>
<tr>
<th>Onderzoekstype</th>
<th>Crd</th>
<th>Crd</th>
<th>Abd</th>
<th>Crd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 2</td>
<td>Zone 6</td>
<td>Zone 1</td>
<td>Zone 0</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1562</td>
<td>1008</td>
<td>1953</td>
<td>15.625</td>
</tr>
<tr>
<td>TDI</td>
<td>Uit</td>
<td>Aan</td>
<td>Uit</td>
<td>Uit</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal ceфаal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 51: Transducermodel: rC60xi Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{r,\alpha}) bij (z_{MI}) (MPa)</td>
<td>2,31</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P) (mW)</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(P_{1x1}) (mW)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_s) (cm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(z_b) (cm)</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_{MI}) (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(z_{pii,\alpha}) (cm)</td>
<td>4,3</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(f_{awf}) (MHz)</td>
<td>2,36</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>(p_{rr}) (Hz)</td>
<td>3584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_{rr}) (Hz)</td>
<td>28,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{pps})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{pa,\alpha}) bij (z_{pii,\alpha}) (W/cm²)</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta,\alpha}) bij (z_{pii,\alpha}) of (z_{sii,\alpha}) (mW/cm²)</td>
<td>24,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{spta}) bij (z_{pii}) of (z_{sii}) (mW/cm²)</td>
<td>44,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_t) bij (z_{pii}) (MPa)</td>
<td>3,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (meerdere bundels)</td>
<td>Uit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Aan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 52: Transducermodel: rC60xi Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>(a)</td>
<td>1,0</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>#</td>
<td>#</td>
<td>0,36</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>#</td>
<td></td>
<td>25,9</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,66</td>
<td></td>
<td>#</td>
<td>2,89</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>144,2</td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>328,2</td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>3,25</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Abd</td>
<td></td>
<td></td>
<td>Msk</td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Pen</td>
<td></td>
<td></td>
<td>Pen</td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>6,6</td>
<td></td>
<td></td>
<td>9,2</td>
</tr>
<tr>
<td>THI</td>
<td>Uit</td>
<td></td>
<td></td>
<td>Uit</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraanial of neonataal cefal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 53: Transducermodel: rC60xi Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>185,8</td>
<td>185,8</td>
<td>#</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>107,5</td>
<td>107,5</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{p_{i_{ii},\alpha}}$ (cm)</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,22</td>
<td>2,21</td>
<td>2,21</td>
<td>#</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>9,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{p_{i_{ii},\alpha}}$ (W/cm²)</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{p_{i_{ii},\alpha}}$ of $z_{s_{i_{ii},\alpha}}$ (mW/cm²)</td>
<td>8,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij $z_{p_{ii}}$ of $z_{s_{ii}}$ (mW/cm²)</td>
<td>15,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr bij $z_{p_{ii}}$ (MPa)</td>
<td>3,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td></td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)/THI</td>
<td>Gen/11/Aan</td>
<td>Gen/4,7/Uit</td>
<td>Gen/4,7/Uit</td>
<td></td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/342</td>
<td>Hoog/3125</td>
<td>Hoog/3125</td>
<td></td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Onderzijde/hoog-smal</td>
<td>Onderzijde/hoog-smal</td>
<td>Onderzijde/hoog-smal</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 54: Transducermodel: rC60xi Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIB Aan opper-vlakte</th>
<th>Onder opper-vlakte</th>
<th>TIC Aan opper-vlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,2</td>
<td>2,0</td>
<td>4,0</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,7</td>
<td>2,0</td>
<td>0,8</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>Akkoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,x}$ bij z_{MI}(MPa)</td>
<td>1,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(mW)</td>
<td></td>
<td>386,5</td>
<td>291,8</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1}(mW)</td>
<td>67,5</td>
<td>74,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s(cm)</td>
<td></td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b(cm)</td>
<td></td>
<td></td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI}(cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,x}$(cm)</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf}(MHz)</td>
<td>2,2</td>
<td>2,23</td>
<td>2,23</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr_{x}(Hz)</td>
<td>1302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr(Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,x}$ bij $z_{pii,x}$(W/cm²)</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,x}$ bij $z_{pii,x}$ of $z_{sii,x}$(mW/cm²)</td>
<td>399,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii}(mW/cm²)</td>
<td>793,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii}(MPa)</td>
<td>2,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Abd</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 3</td>
<td>Zone 6</td>
<td>Zone 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNF (Hz)</td>
<td>1302</td>
<td>2604</td>
<td>2604</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmode; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsoorzaak, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 55: Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan oppervlakte</td>
<td>Onder oppervlakte</td>
<td>Aan oppervlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>$P_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>4,4</td>
<td>4,4</td>
<td>4,7</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td>2,9</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>z_{8} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>2,06</td>
<td>2,06</td>
<td>2,06</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>6413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>15,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td></td>
<td>4,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)</td>
<td></td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm2)</td>
<td></td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td></td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontzoekstype</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td>Res</td>
<td>Res</td>
<td>Gen</td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>4,7</td>
<td>4,7</td>
<td>4,7</td>
<td>16</td>
</tr>
<tr>
<td>MB</td>
<td>Uit</td>
<td>Uit</td>
<td>Uit</td>
<td>Uit</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 56: Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th></th>
<th>TIB</th>
<th></th>
<th>TIC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan opper vlakte</td>
<td>Onder opper vlakte</td>
<td>Aan opper vlakte</td>
<td>Onder opper vlakte</td>
<td>Aan opper vlakte</td>
<td></td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>0,17</td>
<td>0,009</td>
<td></td>
<td>0,020</td>
<td></td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>1,34</td>
<td></td>
<td>1,34</td>
<td></td>
<td>1,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>0,67</td>
<td></td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{s} (cm)</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{b} (cm)</td>
<td>3,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,06</td>
<td>1,83</td>
<td>1,83</td>
<td>1,83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm2)</td>
<td>4,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spt,a}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm2)</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm2)</td>
<td>2,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Res</td>
<td>Gen</td>
<td>Gen</td>
<td>Gen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>4,7</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabellen voor akoestisch vermogen

Tabel 57: Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td></td>
<td>0,17</td>
<td>0,09</td>
<td>0,09</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
</tr>
<tr>
<td>pr,α bij zMI (MPa)</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>15,47</td>
<td>15,47</td>
<td>15,50</td>
<td></td>
</tr>
<tr>
<td>P1x1 (mW)</td>
<td>9,50</td>
<td>9,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zs (cm)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zb (cm)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zMI (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zpii,α (cm)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fawf (MHz)</td>
<td>2,14</td>
<td>2,11</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>5443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npps</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lpa,α bij zpii,α (W/cm²)</td>
<td>1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta,α bij zpii,α of zsii,α (mW/cm²)</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lspta bij zpii of zsii (mW/cm²)</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pr bij zpii (MPa)</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoektype</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Modus</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
<td>CVD</td>
</tr>
<tr>
<td>2D-optimalisatie/diepte (cm)</td>
<td>Gen/4,7</td>
<td>Gen/24</td>
<td>Gen/24</td>
<td>Gen/24</td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/1157</td>
<td>Laag/3125</td>
<td>Laag/3125</td>
<td>Laag/3125</td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Opg/opg</td>
<td>Bovenzijde/kort-breed</td>
<td>Bovenzijde/kort-breed</td>
<td>Bovenzijde/kort-breed</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 58: Transducermodel: rP19x (orbitaal gebruik) Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>0,18</td>
<td>0,27</td>
<td>0,59</td>
<td>0,57</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>37,4</td>
<td>35,3</td>
<td>37,4</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td>17,5</td>
<td>17,0</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td>2,23</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td>2,49</td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>28,9</td>
</tr>
<tr>
<td>I_{spta} bij z_{pi} of z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>69,3</td>
</tr>
<tr>
<td>p_{r} bij z_{pi} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td>Onderzoektype</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
<td>Orb</td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 6</td>
<td>Zone 7</td>
<td>Zone 5</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
<td>1953</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 59: Transducermodel: rP19x Bedrijfsmodus: 2D

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>152,6</td>
<td>152,6</td>
<td>177,8</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>96,1</td>
<td>96,1</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>2,08</td>
<td>2,08</td>
<td>1,53</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>6186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>48,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>25,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>38,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Akoestische parameters**
- **Overige informatie**
- **Bedrijfsvoorwaarden**

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde
om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 60: Transducermodel: rP19x Bedrijfsmodus: M Mode

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>(a)</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,2</td>
<td>1,7</td>
</tr>
<tr>
<td>Akkoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>4,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>1,99</td>
<td>#</td>
<td>1,81</td>
<td>1,77</td>
</tr>
<tr>
<td>Akoestische informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>73,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} or z_{sii} (mW/cm²)</td>
<td>140,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>2,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>TCD</td>
<td>Abd</td>
<td>Abd</td>
<td></td>
</tr>
<tr>
<td>Optimalisatie</td>
<td>Gen</td>
<td>Res</td>
<td>Res</td>
<td></td>
</tr>
<tr>
<td>Diepte (cm)</td>
<td>7,5</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>THI</td>
<td>Uit</td>
<td>Aan</td>
<td>Aan</td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcra- niaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 61: Transducermodel: rP19x Bedrijfsmodus: Color/CPD

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan</td>
<td>Onder</td>
<td>Aan</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,5</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>128,0</td>
<td>128,0</td>
<td>170,5</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>115,6</td>
<td>115,6</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td>4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td>1,99</td>
<td>2,14</td>
<td>2,14</td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td>505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>7,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td></td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_t bij z_{pii} (MPa)</td>
<td></td>
<td>2,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoektype</td>
<td>Abd</td>
<td>TCD</td>
<td>TCD</td>
<td>Crd</td>
</tr>
<tr>
<td>Modus/THI</td>
<td>CVD/Uit</td>
<td>CVD/Uit</td>
<td>CVD/Uit</td>
<td>CVD/Aan</td>
</tr>
<tr>
<td>Kleuroptimalisatie/PRF (Hz)</td>
<td>Laag/300</td>
<td>Laag/3125</td>
<td>Laag/3125</td>
<td>Hoog/5208</td>
</tr>
<tr>
<td>Positie/grootte kleurenvak</td>
<td>Opg/opg</td>
<td>Opg/smal</td>
<td>Opg/smal</td>
<td>Opg/opg</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan</td>
<td>Onder</td>
<td>Aan</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>1,2</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td></td>
<td>1,2</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{Mf} (MPa)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td>125,4</td>
<td>125,4</td>
<td>125,4</td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td></td>
<td>125,4</td>
<td>125,4</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{Mf} (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td># 2,00 2,00 2,00</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>p_r bij z_{pii} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td></td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td></td>
<td>Zone 0</td>
<td>Zone 0</td>
<td>Zone 0</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 63: Transducermodel: rP19x Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
<td>Aan opper-vlakte</td>
<td>Onder opper-vlakte</td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>1,3</td>
<td>1,8</td>
<td>4,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>1,3</td>
<td>1,8</td>
<td>1,2</td>
<td>4,0</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td>1,94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>253,7</td>
<td>240,2</td>
<td>251,1</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>116,8</td>
<td>116,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{S} (cm)</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_{B} (cm)</td>
<td></td>
<td></td>
<td>3,35</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>2,14</td>
<td>2,23</td>
<td>2,23</td>
<td>2,10</td>
</tr>
<tr>
<td>prr (Hz)</td>
<td>1562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srr (Hz)</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sili,\alpha}$ (mW/cm²)</td>
<td>374,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} of z_{sili} (mW/cm²)</td>
<td>594,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p, bij z_{pii} (MPa)</td>
<td>2,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderzoekstype</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
<td>Crd</td>
</tr>
<tr>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Monstervolumepositie</td>
<td>Zone 1</td>
<td>Zone 7</td>
<td>Zone 5</td>
<td>Zone 5</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>1562</td>
<td>1562</td>
<td>39.062</td>
<td>39.062</td>
</tr>
<tr>
<td>TDI</td>
<td>Uit</td>
<td>Uit</td>
<td>Uit</td>
<td>Uit</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmogelijkheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 64: Transducermodel: TEExi Bedrijfsmodus: CW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,7</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>$p_{r,\alpha}$ bij z_{MI} (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td></td>
<td></td>
<td>34,4</td>
<td>#</td>
</tr>
<tr>
<td>$P_{1\times1}$ (mW)</td>
<td></td>
<td></td>
<td>34,4</td>
<td>#</td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>z_b (cm)</td>
<td></td>
<td></td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td></td>
<td>4,00</td>
<td>#</td>
</tr>
<tr>
<td>Overige informatie</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{rr} (Hz)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{pps}</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{spta} bij z_{pii} of z_{sii} (mW/cm²)</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedrijfsvoorwaarden</th>
<th>Onderzoekstype</th>
<th>Monstervolume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crd</td>
<td>Zone 2</td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.

Er zijn geen gegevens gerapporteerd voor deze bedrijfsomstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)

— Gegevens zijn niet van toepassing op deze transducer/modus.
Tabel 65: Transducermodel: TEExi Bedrijfsmodus: PW Doppler

<table>
<thead>
<tr>
<th>Indexlabel</th>
<th>MI</th>
<th>TIS</th>
<th>TIB</th>
<th>TIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opper-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlakte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opper-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlakte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximale indexwaarde</td>
<td>(a)</td>
<td>(a)</td>
<td>1,4</td>
<td>(b)</td>
</tr>
<tr>
<td>Indexcomponentwaarde</td>
<td>#</td>
<td>#</td>
<td>0,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Akoestische parameters</td>
<td>#</td>
<td>#</td>
<td>35,8</td>
<td>#</td>
</tr>
<tr>
<td>p_r,α bij z_{MI} (MPa)</td>
<td>#</td>
<td>#</td>
<td>35,8</td>
<td></td>
</tr>
<tr>
<td>P (mW)</td>
<td>#</td>
<td>#</td>
<td>35,8</td>
<td></td>
</tr>
<tr>
<td>P_{1x1} (mW)</td>
<td>#</td>
<td>#</td>
<td>35,8</td>
<td></td>
</tr>
<tr>
<td>z_s (cm)</td>
<td>#</td>
<td>#</td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>z_b (cm)</td>
<td>#</td>
<td>#</td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>z_{MI} (cm)</td>
<td>#</td>
<td>#</td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>$z_{pii,\alpha}$ (cm)</td>
<td>#</td>
<td>#</td>
<td>2,57</td>
<td></td>
</tr>
<tr>
<td>f_{awf} (MHz)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>Overige informatie</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>$l_{pa,\alpha}$ bij $z_{pii,\alpha}$ (W/cm²)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>$l_{spta,\alpha}$ bij $z_{pii,\alpha}$ of $z_{sii,\alpha}$ (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>l_{spta} bij z_{pii} or z_{sii} (mW/cm²)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>p_{r} bij z_{pii} (MPa)</td>
<td>#</td>
<td>#</td>
<td>3,81</td>
<td></td>
</tr>
<tr>
<td>Bedrijfsvoorwaarden</td>
<td>Onderzoekstype</td>
<td>Crd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monstervolumegrootte (mm)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monstervolumepositie</td>
<td>Zone 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRF (Hz)</td>
<td>2604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Deze index is niet vereist voor deze bedrijfsmodus; waarde is <1.
(b) Deze transducer is niet bedoeld voor transcraniaal of neonataal cefaal gebruik.
Er zijn geen gegevens gerapporteerd voor deze bedrijfsmstandigheid, omdat de algemene maximale indexwaarde om de vermelde reden niet is gerapporteerd. (Raadpleeg lijn algemene maximale indexwaarde.)
— Gegevens zijn niet van toepassing op deze transducer/modus.
Terminologie in de tabellen met akoestisch vermogen

Tabel 66: Terminologie in de tabellen met akoestisch vermogen

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Voor vermindering gebruikte verzwakkingscoëfficiënt. Gelijk aan 0,3 dB/cm/MHz2.</td>
</tr>
<tr>
<td>f_{awf}</td>
<td>Akoestische werkfrequentie.</td>
</tr>
<tr>
<td>$I_{p,a,\alpha}$</td>
<td>Verzwakte pulsgemiddelde-intensiteit.</td>
</tr>
<tr>
<td>I_{spta}</td>
<td>Temporaalgemiddelde spatiële-piekintensiteit.</td>
</tr>
<tr>
<td>$I_{spta,a,\alpha}$</td>
<td>Verzwakte temporaalgemiddelde spatiële-piekintensiteit.</td>
</tr>
<tr>
<td>MI</td>
<td>Mechanische index.</td>
</tr>
<tr>
<td>P</td>
<td>Uitgangsvermogen.</td>
</tr>
<tr>
<td>P_{1x1}</td>
<td>Uitgangsvermogen aanliggend kwadraat.</td>
</tr>
<tr>
<td>pr,α</td>
<td>Verzwakte akoestische piekverdunningsdruk.</td>
</tr>
<tr>
<td>pr</td>
<td>Akoestische piekverdunningsdruk.</td>
</tr>
<tr>
<td>pii</td>
<td>Pulsintensiteitsintegraal.</td>
</tr>
<tr>
<td>pii,α</td>
<td>Verzwakte pulsintensiteitsintegraal.</td>
</tr>
<tr>
<td>n_{pps}</td>
<td>Aantal pulsen per ultrasone scanlijn.</td>
</tr>
<tr>
<td>prr</td>
<td>Pulsherhalingssnelheid.</td>
</tr>
<tr>
<td>srr</td>
<td>Scanherhalingssnelheid.</td>
</tr>
<tr>
<td>TI</td>
<td>Thermische index.</td>
</tr>
<tr>
<td>TIB</td>
<td>Thermische index bot.</td>
</tr>
<tr>
<td>TIC</td>
<td>Thermische index schedelbot.</td>
</tr>
<tr>
<td>TIS</td>
<td>Thermische index weke delen.</td>
</tr>
<tr>
<td>z_b</td>
<td>Diepte voor TIB.</td>
</tr>
<tr>
<td>z_{MI}</td>
<td>Diepte voor mechanische index</td>
</tr>
<tr>
<td>z_{pii}</td>
<td>Diepte voor pulsintensiteitsintegraal.</td>
</tr>
<tr>
<td>$z_{pii,\alpha}$</td>
<td>Diepte voor verzwakte pulsintensiteitsintegraal.</td>
</tr>
</tbody>
</table>
Woordenlijst (SonoSite Edge II)

De term IMT is uit de afkortingenlijst van de gebruikershandleiding van de SonoSite Edge II verwijderd. De herziening wordt in de volgende update doorgevoerd.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{sii}</td>
<td>Diepte voor pieksom pulsintensiteitsintegralen.</td>
</tr>
<tr>
<td>$z_{sii,\alpha}$</td>
<td>Diepte voor pieksom verzwakte pulsintensiteitsintegralen.</td>
</tr>
<tr>
<td>z_s</td>
<td>Diepte voor TIS.</td>
</tr>
</tbody>
</table>